GlucoLens: Explainable Postprandial Blood Glucose Prediction from Diet and Physical Activity
- URL: http://arxiv.org/abs/2503.03935v1
- Date: Wed, 05 Mar 2025 22:10:14 GMT
- Title: GlucoLens: Explainable Postprandial Blood Glucose Prediction from Diet and Physical Activity
- Authors: Abdullah Mamun, Asiful Arefeen, Susan B. Racette, Dorothy D. Sears, Corrie M. Whisner, Matthew P. Buman, Hassan Ghasemzadeh,
- Abstract summary: Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after meals, is a critical indicator of progression toward type 2 diabetes.<n>We propose GlucoLens, an explainable machine learning approach to predict PAUC and hyperglycemia from diet, activity, and recent glucose patterns.
- Score: 6.292642131180376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after meals, is a critical indicator of progression toward type 2 diabetes in prediabetic and healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (PAUC). Predicting PAUC in advance based on a person's diet and activity level and explaining what affects postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this paper, we propose GlucoLens, an explainable machine learning approach to predict PAUC and hyperglycemia from diet, activity, and recent glucose patterns. We conducted a five-week user study with 10 full-time working individuals to develop and evaluate the computational model. Our machine learning model takes multimodal data including fasting glucose, recent glucose, recent activity, and macronutrient amounts, and provides an interpretable prediction of the postprandial glucose pattern. Our extensive analyses of the collected data revealed that the trained model achieves a normalized root mean squared error (NRMSE) of 0.123. On average, GlucoLense with a Random Forest backbone provides a 16% better result than the baseline models. Additionally, GlucoLens predicts hyperglycemia with an accuracy of 74% and recommends different options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
Related papers
- Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
Integrating AI with continuous glucose monitoring holds promise for near-future glucose prediction.<n>CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction.<n>LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon.
arXiv Detail & Related papers (2024-12-12T21:35:13Z) - Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
arXiv Detail & Related papers (2024-10-04T12:52:49Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.<n>GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.<n>In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Body Fat Estimation from Surface Meshes using Graph Neural Networks [48.85291874087541]
We show that triangulated body surface meshes can be used to accurately predict VAT and ASAT volumes using graph neural networks.
Our methods achieve high performance while reducing training time and required resources compared to state-of-the-art convolutional neural networks in this area.
arXiv Detail & Related papers (2023-07-13T10:21:34Z) - Learning Difference Equations with Structured Grammatical Evolution for
Postprandial Glycaemia Prediction [0.0]
Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes.
Traditional methods, such as artificial neural networks, have shown high accuracy rates.
We propose a novel glucose prediction method emphasising interpretability.
arXiv Detail & Related papers (2023-07-03T12:22:04Z) - Learning Absorption Rates in Glucose-Insulin Dynamics from Meal
Covariates [28.39179475412449]
A meal's macronutritional content has nuanced effects on the absorption profile, which is difficult to model mechanistically.
We use a neural network to predict an individual's glucose absorption rate.
arXiv Detail & Related papers (2023-04-27T16:03:41Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
We describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated.
We have tested our proposed method using real data from 4 different diabetes patients with promising results.
arXiv Detail & Related papers (2023-03-30T09:08:31Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
Diabetes is a chronic disease that has a long latent period that complicates detection of the disease at an early stage.
We propose to use machine learning to detect the subtle change in the temporal pattern of glucose concentration.
Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85%$.
arXiv Detail & Related papers (2020-05-18T13:31:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.