論文の概要: Trustworthy Machine Learning under Social and Adversarial Data Sources
- arxiv url: http://arxiv.org/abs/2408.01596v1
- Date: Fri, 2 Aug 2024 22:51:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:20:31.933066
- Title: Trustworthy Machine Learning under Social and Adversarial Data Sources
- Title(参考訳): 社会的・敵対的データに基づく信頼できる機械学習
- Authors: Han Shao,
- Abstract要約: 社会的および敵対的行動は、機械学習システムの振る舞いと性能に顕著な影響を及ぼす可能性がある。
データは戦略的な個人によって生成され、自己関心のデータ収集者によって収集され、敵の攻撃者によって汚染される可能性がある。
その結果、機械学習システムの出力は低下する可能性がある。
- 参考スコア(独自算出の注目度): 14.454844284045642
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning has witnessed remarkable breakthroughs in recent years. As machine learning permeates various aspects of daily life, individuals and organizations increasingly interact with these systems, exhibiting a wide range of social and adversarial behaviors. These behaviors may have a notable impact on the behavior and performance of machine learning systems. Specifically, during these interactions, data may be generated by strategic individuals, collected by self-interested data collectors, possibly poisoned by adversarial attackers, and used to create predictors, models, and policies satisfying multiple objectives. As a result, the machine learning systems' outputs might degrade, such as the susceptibility of deep neural networks to adversarial examples (Shafahi et al., 2018; Szegedy et al., 2013) and the diminished performance of classic algorithms in the presence of strategic individuals (Ahmadi et al., 2021). Addressing these challenges is imperative for the success of machine learning in societal settings.
- Abstract(参考訳): 機械学習は近年、驚くべきブレークスルーを目の当たりにした。
機械学習が日常生活の様々な側面に浸透するにつれ、個人や組織はますますこれらのシステムと相互作用し、幅広い社会的・敵対的な行動を示すようになる。
これらの振る舞いは、機械学習システムの振る舞いと性能に顕著な影響を与える可能性がある。
具体的には、これらの相互作用の間、データは戦略的個人によって生成され、自己関心のデータ収集者によって収集され、おそらく敵の攻撃者によって汚染され、複数の目的を満たす予測器、モデル、ポリシーを作成するために使用される。
その結果、ディープラーニングシステムの出力は、敵対的な例(Shafahi et al , 2018; Szegedy et al , 2013)に対するディープニューラルネットワークの感受性や、戦略的個人の存在下での古典的アルゴリズムのパフォーマンスの低下(Ahmadi et al , 2021)など、低下する可能性がある。
これらの課題に対処することは、社会的環境における機械学習の成功に不可欠である。
関連論文リスト
- Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - Adversarial Learning in Real-World Fraud Detection: Challenges and
Perspectives [1.5373344688357016]
不正行為と敵対的攻撃は機械学習モデルを脅かす。
本稿では,不正検出システムに対する攻撃が,他の機械学習応用とどのように異なるかを述べる。
論文 参考訳(メタデータ) (2023-07-03T23:04:49Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
最大スループット予測の強化,例えばストリーミングや高精細マッピングアプリケーションについて検討する。
収集したデータの基盤となる特性をよりよく理解することで、マシンラーニング技術上に信頼性を構築することができるかを強調します。
我々は、説明可能なAIを使用して、機械学習が明示的にプログラムされることなく、無線ネットワークの基本原理を学習できることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:29:20Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - What Can I Do Here? Learning New Skills by Imagining Visual Affordances [128.65223577406587]
提案手法は,ロボットが可利用性の視覚的表現を学習する上で,どのような結果が得られるかを示す。
実際、事前データは、ロボットが不慣れな状況に遭遇したとき、そのモデルから潜在的な結果をサンプリングするように、どのような結果が得られるかを学ぶのに使用される。
本稿では, VAL(visuomotor affordance learning)を用いて, 生画像入力で動作する目標条件付きポリシーの学習を行う。
論文 参考訳(メタデータ) (2021-06-01T17:58:02Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning
Systems [0.8223798883838329]
本研究では,人間同士の相互作用を強化学習ループに組み込む方法について検討する。
その結果,人間同士の相互作用に基づいて学習した報奨信号は,強化学習アルゴリズムの学習速度を加速させることがわかった。
論文 参考訳(メタデータ) (2020-08-30T17:28:18Z) - Ethical behavior in humans and machines -- Evaluating training data
quality for beneficial machine learning [0.0]
本研究では、教師付き機械学習アプリケーションのためのデータ品質の新しい次元について述べる。
本研究の目的は、その行動の倫理的評価に基づいて、トレーニングデータをどのように選択できるかを説明することである。
論文 参考訳(メタデータ) (2020-08-26T09:48:38Z) - Adversarial Machine Learning in Network Intrusion Detection Systems [6.18778092044887]
ネットワーク侵入検知システムにおける逆問題の性質について検討する。
進化的計算(粒子群最適化と遺伝的アルゴリズム)と深層学習(生成的敵ネットワーク)を、敵対的サンプル生成のためのツールとして利用する。
我々の研究は、敵の摂動に直面した機械学習ベースのNIDSの脆弱性を強調している。
論文 参考訳(メタデータ) (2020-04-23T19:47:43Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。