Adversarial De-confounding in Individualised Treatment Effects
Estimation
- URL: http://arxiv.org/abs/2210.10530v1
- Date: Wed, 19 Oct 2022 13:11:33 GMT
- Title: Adversarial De-confounding in Individualised Treatment Effects
Estimation
- Authors: Vinod Kumar Chauhan, Soheila Molaei, Marzia Hoque Tania, Anshul
Thakur, Tingting Zhu, David Clifton
- Abstract summary: De-confounding is a fundamental problem of individualised treatment effects estimation in observational studies.
This paper proposes disentangled representations with adversarial training to balance the confounders in the binary treatment setting for the ITE estimation.
- Score: 7.443477084710185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observational studies have recently received significant attention from the
machine learning community due to the increasingly available non-experimental
observational data and the limitations of the experimental studies, such as
considerable cost, impracticality, small and less representative sample sizes,
etc. In observational studies, de-confounding is a fundamental problem of
individualised treatment effects (ITE) estimation. This paper proposes
disentangled representations with adversarial training to selectively balance
the confounders in the binary treatment setting for the ITE estimation. The
adversarial training of treatment policy selectively encourages
treatment-agnostic balanced representations for the confounders and helps to
estimate the ITE in the observational studies via counterfactual inference.
Empirical results on synthetic and real-world datasets, with varying degrees of
confounding, prove that our proposed approach improves the state-of-the-art
methods in achieving lower error in the ITE estimation.
Related papers
- Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
arXiv Detail & Related papers (2023-07-04T02:53:11Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.