論文の概要: IAdet: Simplest human-in-the-loop object detection
- arxiv url: http://arxiv.org/abs/2307.01582v1
- Date: Tue, 4 Jul 2023 09:22:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:37:27.866670
- Title: IAdet: Simplest human-in-the-loop object detection
- Title(参考訳): IAdet:最も単純なループ中の人間オブジェクト検出
- Authors: Franco Marchesoni-Acland, Gabriele Facciolo
- Abstract要約: この研究は、Intelligentという名前のデータをアノテートしながらモデルをトレーニングするための戦略を提案する。
単クラスオブジェクト検出に特化したIAdetツールをオープンソースとして公開しています。
- 参考スコア(独自算出の注目度): 5.951442065848392
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This work proposes a strategy for training models while annotating data named
Intelligent Annotation (IA). IA involves three modules: (1) assisted data
annotation, (2) background model training, and (3) active selection of the next
datapoints. Under this framework, we open-source the IAdet tool, which is
specific for single-class object detection. Additionally, we devise a method
for automatically evaluating such a human-in-the-loop system. For the PASCAL
VOC dataset, the IAdet tool reduces the database annotation time by $25\%$
while providing a trained model for free. These results are obtained for a
deliberately very simple IAdet design. As a consequence, IAdet is susceptible
to multiple easy improvements, paving the way for powerful human-in-the-loop
object detection systems.
- Abstract(参考訳): この研究は、Intelligent Annotation (IA) という名前のデータをアノテートしながらモデルをトレーニングするための戦略を提案する。
iaには,(1)データアノテーション支援,(2)背景モデルのトレーニング,(3)データポイントのアクティブ選択という3つのモジュールが含まれている。
このフレームワークでは、シングルクラスのオブジェクト検出に特化したIAdetツールをオープンソースにしています。
さらに,そのようなループシステムを自動的に評価する手法も考案した。
PASCAL VOCデータセットの場合、IAdetツールは、トレーニング済みのモデルを無償で提供しながら、データベースアノテーションの時間を25\%$に短縮する。
これらの結果は、意図的に非常に単純なIAdet設計のために得られる。
その結果、IAdetは複数の簡単な改善の影響を受けるようになり、強力なHuman-in-the-loopオブジェクト検出システムへの道を開いた。
関連論文リスト
- Scale-Invariant Feature Disentanglement via Adversarial Learning for UAV-based Object Detection [18.11107031800982]
本稿では,スケール不変の特徴を学習することで,単段階推論の精度を向上させることを提案する。
3つのベンチマークデータセット上で、最先端の3つの軽量検出フレームワークに適用する。
論文 参考訳(メタデータ) (2024-05-24T11:40:22Z) - The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration [1.2815904071470705]
エントロピークエリは、リソース制約のある環境でモデル学習を強化するデータを選択するための有望な戦略である。
この結果から,エントロピークエリは資源制約のある環境でのモデル学習を促進するデータ選択に有望な戦略であることが示唆された。
論文 参考訳(メタデータ) (2024-01-30T00:14:13Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
この研究は、ゼロショット分類によって潜在的に新しいクラスを特定するための単純かつ効率的な戦略を導入する。
このアプローチは、アノテーションやデータセット、再学習を必要とせずに、新しいクラスのリコールと精度を高めるセルフトレーニング戦略として言及する。
LVIS、V3Det、COCOを含む3つのデータセットに対する実証的な評価は、ベースラインのパフォーマンスを大幅に改善したことを示している。
論文 参考訳(メタデータ) (2023-10-02T17:52:24Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
本稿では,高性能なオフラインLiDARによる3Dオブジェクト検出を実現することを目的とする。
まず、経験豊富な人間のアノテータが、トラック中心の視点でオブジェクトに注釈を付けるのを観察する。
従来のオブジェクト中心の視点ではなく,トラック中心の視点で高性能なオフライン検出器を提案する。
論文 参考訳(メタデータ) (2023-04-24T17:59:05Z) - Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving [45.405303803618]
多様性に基づくアクティブラーニング(AL)を,アノテーションの負担を軽減するための潜在的解決策として検討する。
選択したサンプルの空間的・時間的多様性を強制する新しい取得関数を提案する。
提案手法がnuScenesデータセットに与える影響を実証し,既存のAL戦略を著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-05-16T14:21:30Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
画像レベルのコントラスト表現学習は、伝達学習の汎用モデルとして非常に有効であることが証明されている。
我々は、これは準最適である可能性があり、従って、自己教師付きプレテキストタスクと下流タスクのアライメントを促進する設計原則を提唱する。
Selective Object Contrastive Learning (SoCo) と呼ばれる本手法は,COCO検出における伝達性能の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-04T17:59:52Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Learning to Rank for Active Learning: A Listwise Approach [36.72443179449176]
アクティブラーニングは、大量のデータを空腹のアプリケーションにラベル付けする作業を緩和する代替手段として登場した。
本研究では,単純なリストワイズ手法を用いて,損失予測モジュールの構造を再考する。
4つのデータセットに対する実験結果から,本手法は画像分類と回帰処理の両方において,最近の最先端の能動的学習手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-31T21:05:16Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
オブジェクトの動きと親和性モデルを単一のネットワークに統一する新しいMOTフレームワークUMAを提案する。
UMAは、単一物体追跡とメートル法学習をマルチタスク学習により統合された三重項ネットワークに統合する。
我々は,タスク認識機能学習を促進するために,タスク固有のアテンションモジュールを装備する。
論文 参考訳(メタデータ) (2020-03-25T09:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。