論文の概要: Citation: A Key to Building Responsible and Accountable Large Language Models
- arxiv url: http://arxiv.org/abs/2307.02185v3
- Date: Sun, 31 Mar 2024 19:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 15:54:17.604277
- Title: Citation: A Key to Building Responsible and Accountable Large Language Models
- Title(参考訳): Citation: 責任と説明責任を持った大規模言語モデルを構築するための鍵
- Authors: Jie Huang, Kevin Chen-Chuan Chang,
- Abstract要約: 大規模言語モデル(LLM)は、知的財産権(IP)や倫理的関心事など、ユニークな課題と共に変革的な利益をもたらす。
本稿では、これらのリスクを軽減し、LLMと確立されたWebシステム間の並列性を図り、新しい角度を探索する。
- 参考スコア(独自算出の注目度): 25.671237896575693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) bring transformative benefits alongside unique challenges, including intellectual property (IP) and ethical concerns. This position paper explores a novel angle to mitigate these risks, drawing parallels between LLMs and established web systems. We identify "citation" - the acknowledgement or reference to a source or evidence - as a crucial yet missing component in LLMs. Incorporating citation could enhance content transparency and verifiability, thereby confronting the IP and ethical issues in the deployment of LLMs. We further propose that a comprehensive citation mechanism for LLMs should account for both non-parametric and parametric content. Despite the complexity of implementing such a citation mechanism, along with the potential pitfalls, we advocate for its development. Building on this foundation, we outline several research problems in this area, aiming to guide future explorations towards building more responsible and accountable LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、知的財産権(IP)や倫理的関心事など、ユニークな課題と共に変革的な利益をもたらす。
本稿では、これらのリスクを軽減し、LLMと確立されたWebシステム間の並列性を図り、新しい角度を探索する。
引用” – ソースやエビデンスに対する認識あるいは参照 – を,LLMにおいて重要かつ欠落しているコンポーネントとして識別する。
引用を組み込むことでコンテンツの透明性と妥当性を高め、LLMの展開においてIPと倫理的問題に直面する可能性がある。
さらに、LLMの総合的な引用機構は、非パラメトリックコンテンツとパラメトリックコンテンツの両方を考慮すべきである。
このような励振機構を実装するのが複雑であるにもかかわらず、潜在的な落とし穴とともに、我々はその発展を提唱する。
本財団を基盤として,本分野におけるいくつかの研究課題を概説し,より責任と説明責任を持ったLCMの構築に向けた今後の探索を導くことを目的とする。
関連論文リスト
- Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
計画と推論タスクにおけるLLM(Large Language Models)の役割には、かなりの混乱がある。
自己回帰型LSMは、それ自体で計画や自己検証を行うことはできない、と我々は主張する。
本稿では,LLMの強みと外部モデルベース検証器を併用した bf LLM-Modulo Framework のビジョンを提案する。
論文 参考訳(メタデータ) (2024-02-02T14:43:18Z) - Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language
Model Systems [29.828997665535336]
大規模言語モデル(LLM)は、多様な自然言語処理タスクを解く上で強力な能力を持つ。
しかし、LLMシステムの安全性とセキュリティの問題は、その広範な応用にとって大きな障害となっている。
本稿では,LLMシステムの各モジュールに関連する潜在的なリスクを体系的に分析する包括的分類法を提案する。
論文 参考訳(メタデータ) (2024-01-11T09:29:56Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)コミュニティ内で大きな注目を集めています。
本稿では,LSMに基づく研究の有効性に対する潜在的な脅威について,オープンな議論を開始する。
論文 参考訳(メタデータ) (2023-12-13T11:02:19Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - When Large Language Models Meet Citation: A Survey [37.01594297337486]
大規模言語モデル(LLM)は、対応するテキストコンテキストを介して詳細な引用情報を取得するのに役立つ。
キュリオシティはまた、科学論文間のつながりを確立し、高品質な文書間関係を提供する。
本稿では, 引用分類, 引用に基づく要約, 引用レコメンデーションを含む, テキスト内引用分析タスクへのLLMの適用について概説する。
論文 参考訳(メタデータ) (2023-09-18T12:48:48Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
我々は、ChatGPT、LLaMA、OPTを含む、主流の大規模言語モデル(LLM)に100万以上のクエリを実行します。
入力が極端に汚染された場合でも、ChatGPTは正しい答えを得ることができる。
そこで本研究では,LCMによる評価において,そのようなデータの有効性を大まかに決定する新たな指標を提案する。
論文 参考訳(メタデータ) (2023-05-15T15:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。