Efficient Information Reconciliation for High-Dimensional Quantum Key Distribution
- URL: http://arxiv.org/abs/2307.02225v2
- Date: Thu, 30 May 2024 07:36:11 GMT
- Title: Efficient Information Reconciliation for High-Dimensional Quantum Key Distribution
- Authors: Ronny Mueller, Domenico Ribezzo, Mujtaba Zahidy, Leif Katsuo Oxenløwe, Davide Bacco, Søren Forchhammer,
- Abstract summary: We introduce two novel methods for reconciliation in high-dimensional QKD systems.
The methods are based on nonbinary LDPC codes and the Cascade algorithm, and achieve efficiencies close the the Slepian-Wolf bound on q-ary symmetric channels.
- Score: 2.4277680835263005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Information Reconciliation phase in quantum key distribution has significant impact on the range and throughput of any QKD system. We explore this stage for high-dimensional QKD implementations and introduce two novel methods for reconciliation. The methods are based on nonbinary LDPC codes and the Cascade algorithm, and achieve efficiencies close the the Slepian-Wolf bound on q-ary symmetric channels.
Related papers
- Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Boosting quantum key distribution via the end-to-end loss control [0.0]
We show a remarkable improvement in the quantum key distribution (QKD) performance using end-to-end line tomography.
Our approach is based on the real-time detection of interventions in the transmission channel.
Our findings provide everlastingly secure efficient quantum cryptography deployment.
arXiv Detail & Related papers (2023-08-07T17:32:14Z) - Information Reconciliation for High-Dimensional Quantum Key Distribution
using Nonbinary LDPC codes [0.0]
The application of nonbinary LDPC codes in the Information Reconciliation stage of a high-dimensional discrete-variable Quantum Key Distribution setup is proposed.
We show that codes constructed using these distributions allow for efficient reconciliation of large-alphabet keys.
arXiv Detail & Related papers (2023-05-15T13:26:08Z) - QKD Based on Time-Entangled Photons and its Key-Rate Promise [24.07745562101555]
Time-entanglement-based QKD promises to increase the secret key rate and distribution compared to other QKD implementations.
We overview state-of-the-art from the information and coding theory perspective.
arXiv Detail & Related papers (2023-03-03T14:40:40Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - A novel approach to reducing information leakage for quantum key
distribution [5.9564982060176765]
We propose a novel approach to further reduce the information leakage of quantum part and post-processing part.
The information leakage of post-processing part caused solely by multi-photon pulses is considered twice in previous studies.
We derive the formulas to calculate the amount of information leakage for decoy-BB84 and sending-or-not-sending twin-field protocols.
arXiv Detail & Related papers (2021-04-28T06:05:51Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.