OLR-WA Online Regression with Weighted Average
- URL: http://arxiv.org/abs/2307.02804v1
- Date: Thu, 6 Jul 2023 06:39:27 GMT
- Title: OLR-WA Online Regression with Weighted Average
- Authors: Mohammad Abu-Shaira and Greg Speegle
- Abstract summary: We introduce a new online linear regression approach to train machine learning models.
The introduced model, named OLR-WA, uses user-defined weights to provide flexibility in the face of changing data.
For consistent data, OLR-WA and the static batch model perform similarly and for varying data, the user can set the OLR-WA to adapt more quickly or to resist change.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning requires a large amount of training data in order to build
accurate models. Sometimes the data arrives over time, requiring significant
storage space and recalculating the model to account for the new data. On-line
learning addresses these issues by incrementally modifying the model as data is
encountered, and then discarding the data. In this study we introduce a new
online linear regression approach. Our approach combines newly arriving data
with a previously existing model to create a new model. The introduced model,
named OLR-WA (OnLine Regression with Weighted Average) uses user-defined
weights to provide flexibility in the face of changing data to bias the results
in favor of old or new data. We have conducted 2-D and 3-D experiments
comparing OLR-WA to a static model using the entire data set. The results show
that for consistent data, OLR-WA and the static batch model perform similarly
and for varying data, the user can set the OLR-WA to adapt more quickly or to
resist change.
Related papers
- Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Large Language Model (LLM) pretraining traditionally relies on autoregressive language modeling on randomly sampled data blocks from web-scale datasets.
We take inspiration from human learning techniques like spaced repetition to hypothesize that random data sampling for LLMs leads to high training cost and low quality models which tend to forget data.
In order to effectively commit web-scale information to long-term memory, we propose the LFR (Learn, Focus, and Review) pedagogy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Backward Compatibility During Data Updates by Weight Interpolation [17.502410289568587]
We study the problem of regression during data updates and propose Backward Compatible Weight Interpolation (BCWI)
BCWI reduces negative flips without sacrificing the improved accuracy of the new model.
We also explore the use of importance weighting during and averaging the weights of multiple new models in order to further reduce negative flips.
arXiv Detail & Related papers (2023-01-25T12:23:10Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Deep Regression Unlearning [6.884272840652062]
We introduce deep regression unlearning methods that generalize well and are robust to privacy attacks.
We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications.
arXiv Detail & Related papers (2022-10-15T05:00:20Z) - Machine Unlearning Method Based On Projection Residual [23.24026891609028]
This paper adopts the projection residual method based on Newton method.
The main purpose is to implement machine unlearning tasks in the context of linear regression models and neural network models.
Experiments show that this method is more thorough in deleting data, which is close to model retraining.
arXiv Detail & Related papers (2022-09-30T07:29:55Z) - DeepVARwT: Deep Learning for a VAR Model with Trend [1.9862987223379664]
We propose a new approach that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure.
A Long Short-Term Memory (LSTM) network is used for this purpose.
We provide a simulation study and an application to real data.
arXiv Detail & Related papers (2022-09-21T18:23:03Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
It is known that if models selected for data modelling are distinct (linear/non-linear, static/dynamic) and independent (minimally correlated) models, the accuracy of the predictions is improved.
Various approaches suggested in the literature to weigh the ensemble models use a static set of weights.
To address this issue, a Reinforcement Learning (RL) approach to dynamically assign and update weights of each of the models at different time instants.
arXiv Detail & Related papers (2020-08-20T10:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.