Classification and magic magnetic-field directions for spin-orbit-coupled double quantum dots
- URL: http://arxiv.org/abs/2307.02958v2
- Date: Sat, 20 Jul 2024 11:39:42 GMT
- Title: Classification and magic magnetic-field directions for spin-orbit-coupled double quantum dots
- Authors: Aritra Sen, György Frank, Baksa Kolok, Jeroen Danon, András Pályi,
- Abstract summary: Fundamental building blocks of spin-based quantum computing have been demonstrated in double quantum dots with significant spin-orbit coupling.
We show that spin-orbit-coupled double quantum dots can be categorised in six classes, according to a partitioning of the multi-dimensional space of their $g$-tensors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spin of a single electron confined in a semiconductor quantum dot is a natural qubit candidate. Fundamental building blocks of spin-based quantum computing have been demonstrated in double quantum dots with significant spin-orbit coupling. Here, we show that spin-orbit-coupled double quantum dots can be categorised in six classes, according to a partitioning of the multi-dimensional space of their $g$-tensors. The class determines physical characteristics of the double dot, i.e., features in transport, spectroscopy and coherence measurements, as well as qubit control, shuttling, and readout experiments. In particular, we predict that the spin physics is highly simplified due to pseudospin conservation, whenever the external magnetic field is pointing to special directions (`magic directions'), where the number of special directions is determined by the class. We also analyze the existence and relevance of magic loops in the space of magnetic-field directions, corresponding to equal local Zeeman splittings. These results present an important step toward precise interpretation and efficient design of spin-based quantum computing experiments in materials with strong spin-orbit coupling.
Related papers
- Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Quantum circuits to measure scalar spin chirality [0.5134254313682964]
In quantum information, the scalar spin chirality is a witness of genuine tripartite entanglement.
We propose an indirect measurement scheme, based on the Hadamard test, to estimate the scalar spin chirality for general quantum states.
We show a single-shot determination of the scalar chirality is possible for chirality eigenstates, via quantum phase estimation with a single auxiliary qutrit.
arXiv Detail & Related papers (2023-06-26T16:05:06Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Dephasing of Exchange-coupled Spins in Quantum Dots for Quantum
Computing [0.0]
A spin qubit in semiconductor quantum dots holds promise for quantum information processing.
We report progress on spin dephasing of two exchange-coupled spins in a double quantum dot.
arXiv Detail & Related papers (2021-09-06T06:38:20Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Strong spin-orbit interaction and $g$-factor renormalization of hole
spins in Ge/Si nanowire quantum dots [0.0]
Hole spins in Ge/Si core/shell nanowires experience a spin-orbit interaction that has been predicted to be both strong and electrically tunable.
We experimentally determine the strength of spin-orbit interaction of hole spins confined to a double quantum dot in a Ge/Si nanowire.
arXiv Detail & Related papers (2020-07-08T17:54:49Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.