論文の概要: Efficient Ground Vehicle Path Following in Game AI
- arxiv url: http://arxiv.org/abs/2307.03379v1
- Date: Fri, 7 Jul 2023 04:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 13:28:02.639776
- Title: Efficient Ground Vehicle Path Following in Game AI
- Title(参考訳): ゲームAIにおける効率的な地上走行経路
- Authors: Rodrigue de Schaetzen, Alessandro Sestini
- Abstract要約: 本稿では,ゲームAIに適した地上車両の効率的な追従経路を提案する。
提案したパスフォロワは,一対一シューティングゲームにおいて,様々なテストシナリオを通じて評価される。
その結果,既存の経路と比較すると,立ち往生するイベントの総数が70%減少した。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This short paper presents an efficient path following solution for ground
vehicles tailored to game AI. Our focus is on adapting established techniques
to design simple solutions with parameters that are easily tunable for an
efficient benchmark path follower. Our solution pays particular attention to
computing a target speed which uses quadratic Bezier curves to estimate the
path curvature. The performance of the proposed path follower is evaluated
through a variety of test scenarios in a first-person shooter game,
demonstrating its effectiveness and robustness in handling different types of
paths and vehicles. We achieved a 70% decrease in the total number of stuck
events compared to an existing path following solution.
- Abstract(参考訳): 本稿では,ゲームAIに適した地上車両の効率的な経路について述べる。
私たちの焦点は、効率的なベンチマークパス追従者に簡単に調整可能なパラメータでシンプルなソリューションを設計するために確立された技術を適用することです。
我々の解は、2次ベジエ曲線を用いて経路曲率を推定する目標速度の計算に特に注意を払う。
提案したパスフォロワの性能は、一対一のシューティングゲームにおける様々なテストシナリオを通じて評価され、異なる種類のパスや車両を扱う上での有効性と堅牢性を示す。
その結果,既存の経路と比較すると,立ち往生するイベントの総数が70%減少した。
関連論文リスト
- Finding Transformer Circuits with Edge Pruning [71.12127707678961]
自動回路発見の効率的かつスケーラブルなソリューションとしてエッジプルーニングを提案する。
本手法は,従来の手法に比べてエッジ数の半分未満のGPT-2の回路を探索する。
その効率のおかげで、Edge PruningをCodeLlama-13Bにスケールしました。
論文 参考訳(メタデータ) (2024-06-24T16:40:54Z) - Path Planning in a dynamic environment using Spherical Particle Swarm Optimization [0.0]
本研究では, 球面ベクトルを用いた粒子群最適化技術を用いたUAV用動的パスプランナ(DPP)を提案する。
経路は、チェックポイントを再計画する一組の経路として構築されている。経路長、安全、姿勢、経路平滑性はすべて、最適な経路がどうあるべきかを決定する上で考慮される。
実際のデジタル標高モデルを用いて4つのテストシナリオが実施される。それぞれのテストは、SPSO-DPPが安全で効率的な経路セグメントを生成することができるかを示すために、パスの長さと安全性に異なる優先順位を与える。
論文 参考訳(メタデータ) (2024-03-19T13:56:34Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
パッシブル障害物認識(Passable Obstacles Aware, POA)プランナーは, 乱雑な環境下での二輪ロボットのナビゲーション手法である。
我々のアルゴリズムは、二輪ロボットが通過可能な障害物を通り抜ける道を見つけることを可能にする。
論文 参考訳(メタデータ) (2023-07-16T19:44:27Z) - Reducing Collision Checking for Sampling-Based Motion Planning Using
Graph Neural Networks [10.698553177585973]
本研究では,衝突チェックを減らし,動作計画の高速化を図るための新しい学習手法を提案する。
経路探索と経路平滑化を行うグラフニューラルネットワーク(GNN)を訓練する。
実験の結果,学習したコンポーネントは衝突チェックを著しく低減し,全体の計画効率を向上できることがわかった。
論文 参考訳(メタデータ) (2022-10-17T09:02:04Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - OTTR: Off-Road Trajectory Tracking using Reinforcement Learning [6.033086397437647]
オフロード軌道追跡問題に対する新しい強化学習(RL)アルゴリズムを提案する。
提案手法は,ベースラインRLポリシーに適応するために利用可能な限られた実世界のデータを効率的に活用する。
標準のILQR手法と比較して,提案手法はWarthogとMooseのクロストラック誤差を30%,50%削減する。
論文 参考訳(メタデータ) (2021-10-05T20:04:37Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - Multi-Agent Path Planning based on MPC and DDPG [14.793341914236166]
モデル予測制御(MPC)とDeep Deterministic Policy Gradient(DDPG)を組み合わせた新しいアルゴリズムを提案する。
ddpg with continuous action spaceは、ロボットに学習と自律的な意思決定機能を提供するように設計されている。
航空母艦デッキや四角形などの不確定な環境でのシミュレーション実験にunity 3dを用いる。
論文 参考訳(メタデータ) (2021-02-26T02:57:13Z) - Targeted Physical-World Attention Attack on Deep Learning Models in Road
Sign Recognition [79.50450766097686]
本稿では,現実の道路標識攻撃に対するTAA手法を提案する。
実験の結果,TAA法は攻撃成功率(約10%)を向上し,RP2法と比較して摂動損失(約4分の1)を減少させることがわかった。
論文 参考訳(メタデータ) (2020-10-09T02:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。