論文の概要: Multi-Agent Path Planning based on MPC and DDPG
- arxiv url: http://arxiv.org/abs/2102.13283v1
- Date: Fri, 26 Feb 2021 02:57:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-01 13:47:19.825900
- Title: Multi-Agent Path Planning based on MPC and DDPG
- Title(参考訳): MPCとDDPGに基づくマルチエージェントパス計画
- Authors: Junxiao Xue and Xiangyan Kong and Bowei Dong and Mingliang Xu
- Abstract要約: モデル予測制御(MPC)とDeep Deterministic Policy Gradient(DDPG)を組み合わせた新しいアルゴリズムを提案する。
ddpg with continuous action spaceは、ロボットに学習と自律的な意思決定機能を提供するように設計されている。
航空母艦デッキや四角形などの不確定な環境でのシミュレーション実験にunity 3dを用いる。
- 参考スコア(独自算出の注目度): 14.793341914236166
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of mixed static and dynamic obstacle avoidance is essential for
path planning in highly dynamic environment. However, the paths formed by grid
edges can be longer than the true shortest paths in the terrain since their
headings are artificially constrained. Existing methods can hardly deal with
dynamic obstacles. To address this problem, we propose a new algorithm
combining Model Predictive Control (MPC) with Deep Deterministic Policy
Gradient (DDPG). Firstly, we apply the MPC algorithm to predict the trajectory
of dynamic obstacles. Secondly, the DDPG with continuous action space is
designed to provide learning and autonomous decision-making capability for
robots. Finally, we introduce the idea of the Artificial Potential Field to set
the reward function to improve convergence speed and accuracy. We employ Unity
3D to perform simulation experiments in highly uncertain environment such as
aircraft carrier decks and squares. The results show that our method has made
great improvement on accuracy by 7%-30% compared with the other methods, and on
the length of the path and turning angle by reducing 100 units and 400-450
degrees compared with DQN (Deep Q Network), respectively.
- Abstract(参考訳): 混合静的および動的障害物回避の問題は、非常にダイナミックな環境での経路計画に不可欠です。
しかし、グリッドエッジによって形成される経路は、その方向が人工的に制約されているため、地形における真の最短経路よりも長い可能性がある。
既存の方法は動的障害にほとんど対処できません。
そこで本研究では,モデル予測制御(MPC)とDeep Deterministic Policy Gradient(DDPG)を組み合わせた新たなアルゴリズムを提案する。
まず, 動的障害物の軌跡予測に MPC アルゴリズムを適用した。
第二に、連続的なアクション空間を備えたDDPGは、ロボットの学習と自律的な意思決定機能を提供するように設計されている。
最後に、報酬関数を設定し、収束速度と精度を向上させる人工ポテンシャル場の概念を導入する。
航空母艦デッキや四角形などの不確定な環境でのシミュレーション実験にunity 3dを用いる。
その結果,本手法は,DQN(Deep Q Network)と比較して100単位,400〜450度削減することで,他の手法に比べて精度が7%~30%向上し,経路の長さと回転角が大幅に向上した。
関連論文リスト
- Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
論文 参考訳(メタデータ) (2024-10-22T07:29:05Z) - Path Planning in a dynamic environment using Spherical Particle Swarm Optimization [0.0]
本研究では, 球面ベクトルを用いた粒子群最適化技術を用いたUAV用動的パスプランナ(DPP)を提案する。
経路は、チェックポイントを再計画する一組の経路として構築されている。経路長、安全、姿勢、経路平滑性はすべて、最適な経路がどうあるべきかを決定する上で考慮される。
実際のデジタル標高モデルを用いて4つのテストシナリオが実施される。それぞれのテストは、SPSO-DPPが安全で効率的な経路セグメントを生成することができるかを示すために、パスの長さと安全性に異なる優先順位を与える。
論文 参考訳(メタデータ) (2024-03-19T13:56:34Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
パッシブル障害物認識(Passable Obstacles Aware, POA)プランナーは, 乱雑な環境下での二輪ロボットのナビゲーション手法である。
我々のアルゴリズムは、二輪ロボットが通過可能な障害物を通り抜ける道を見つけることを可能にする。
論文 参考訳(メタデータ) (2023-07-16T19:44:27Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
本稿では,エスケープネットワークを用いた微分動的プログラミング(DDPEN)を提案する。
本稿では,環境の入力マップとして,所望の位置とともにコストマップの形で利用する深層モデルを提案する。
このモデルは、目標に導く可能性のある将来の方向を生成し、リアルタイムに実行可能なローカルなミニマを避ける。
論文 参考訳(メタデータ) (2023-01-18T11:02:06Z) - A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera [7.77809394151497]
RGB-Dカメラを用いたクワッドコプター障害物回避のためのリアルタイム動的障害物追跡とマッピングシステムを提案する。
本手法は,動的環境における障害物をリアルタイムに追跡・表現することができ,障害物を安全に回避することができる。
論文 参考訳(メタデータ) (2022-09-17T05:32:33Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
本稿では,ロボットの車載視力を利用した勾配に基づくB-スプライン軌道最適化アルゴリズムを提案する。
提案手法は、まず円ベースのガイドポイントアルゴリズムを用いて、静的障害物を避けるためのコストと勾配を近似する。
視界検出された移動物体では, 動的衝突を防止するために, 反射・水平距離場が同時に使用される。
論文 参考訳(メタデータ) (2022-09-15T02:12:30Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Identification and Avoidance of Static and Dynamic Obstacles on Point
Cloud for UAVs Navigation [7.14505983271756]
クラウド入力のみを点とする静的障害と動的障害を区別する手法を提案する。
計算効率の良い障害物回避運動計画手法を提案し, 改良された相対速度法と一致している。
このアプローチは、同じフレームワークの静的障害と動的障害の両方を避けることができる。
論文 参考訳(メタデータ) (2021-05-14T02:44:18Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
そこで本稿では,RRT*textquotedblrightのテキストを幾何学的にベースとした動き計画手法を提案する。
提案手法では,適応探索空間とステアリング機能を導入したオリジナルのRT*を改良した。
提案手法を様々なシミュレーション環境で検証した。
論文 参考訳(メタデータ) (2020-08-29T09:55:49Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。