論文の概要: Learning Theory of Distribution Regression with Neural Networks
- arxiv url: http://arxiv.org/abs/2307.03487v1
- Date: Fri, 7 Jul 2023 09:49:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 13:01:25.169314
- Title: Learning Theory of Distribution Regression with Neural Networks
- Title(参考訳): ニューラルネットワークを用いた分布回帰の学習理論
- Authors: Zhongjie Shi, Zhan Yu, Ding-Xuan Zhou
- Abstract要約: 完全連結ニューラルネットワーク(FNN)による近似理論と分布回帰の学習理論を確立する。
古典回帰法とは対照的に、分布回帰の入力変数は確率測度である。
- 参考スコア(独自算出の注目度): 6.961253535504979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim at establishing an approximation theory and a learning
theory of distribution regression via a fully connected neural network (FNN).
In contrast to the classical regression methods, the input variables of
distribution regression are probability measures. Then we often need to perform
a second-stage sampling process to approximate the actual information of the
distribution. On the other hand, the classical neural network structure
requires the input variable to be a vector. When the input samples are
probability distributions, the traditional deep neural network method cannot be
directly used and the difficulty arises for distribution regression. A
well-defined neural network structure for distribution inputs is intensively
desirable. There is no mathematical model and theoretical analysis on neural
network realization of distribution regression. To overcome technical
difficulties and address this issue, we establish a novel fully connected
neural network framework to realize an approximation theory of functionals
defined on the space of Borel probability measures. Furthermore, based on the
established functional approximation results, in the hypothesis space induced
by the novel FNN structure with distribution inputs, almost optimal learning
rates for the proposed distribution regression model up to logarithmic terms
are derived via a novel two-stage error decomposition technique.
- Abstract(参考訳): 本稿では,完全連結ニューラルネットワーク(FNN)を用いて近似理論と分布回帰の学習理論を確立することを目的とする。
古典的な回帰法とは対照的に、分布回帰の入力変数は確率測度である。
そして、分布の実際の情報を近似するために、しばしば第2段階のサンプリングプロセスを実行する必要がある。
一方、古典的なニューラルネットワーク構造では、入力変数がベクトルとなる必要がある。
入力サンプルが確率分布である場合、従来のディープニューラルネットワーク法は直接使用できず、分布回帰の困難が生じる。
分布入力のためのよく定義されたニューラルネットワーク構造が望まれる。
分布回帰のニューラルネットワーク実現に関する数学的モデルや理論的解析は存在しない。
技術的困難を克服し,この問題に対処するために,ボレル確率測度の空間上で定義される関数の近似理論を実現するための,新たな完全連結ニューラルネットワークフレームワークを構築した。
さらに、確立された関数近似結果に基づいて、分布入力を持つ新しいFNN構造によって誘導される仮説空間において、対数項までの分布回帰モデルに対するほぼ最適な学習率を、新しい2段階誤差分解手法により導出する。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
本稿では,ニューラルネットワークの入出力分布を正確に特徴付けるために,サンプルフリーモーメント伝搬法を提案する。
この手法の鍵となる有効性は、非線形活性化関数を通した確率変数の共分散に対する解析解である。
学習ニューラルネットワークの入力出力分布を分析し,ベイズニューラルネットワークを訓練する実験において,提案手法の適用性およびメリットを示す。
論文 参考訳(メタデータ) (2024-03-24T14:08:24Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with
Linear Convergence Rates [7.094295642076582]
平均場体制はNTK(lazy training)体制の理論的に魅力的な代替手段である。
平均場状態における連続ノイズ降下により訓練された2層ニューラルネットワークに対する線形収束結果を確立した。
論文 参考訳(メタデータ) (2022-05-19T21:05:40Z) - Approximation bounds for norm constrained neural networks with
applications to regression and GANs [9.645327615996914]
本稿では,ReLUニューラルネットワークの近似誤差の上限値と下限値について,重みの基準値で検証する。
我々はこれらの近似境界を適用し、ノルム制約付きニューラルネットワークを用いて回帰の収束を分析し、GANによる分布推定を行う。
論文 参考訳(メタデータ) (2022-01-24T02:19:05Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
本研究では,確率論的ニューラルネットワークの予測器としての期待値について検討し,実数値重みによる正規分布を持つ二元活性化ニューラルネットワークの集約に着目した。
我々は、動的プログラミングアプローチのおかげで、深いが狭いニューラルネットワークに対して、正確な計算が引き続き実行可能であることを示す。
論文 参考訳(メタデータ) (2021-10-28T14:11:07Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。