論文の概要: Text Simplification of Scientific Texts for Non-Expert Readers
- arxiv url: http://arxiv.org/abs/2307.03569v1
- Date: Fri, 7 Jul 2023 13:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 12:28:34.084191
- Title: Text Simplification of Scientific Texts for Non-Expert Readers
- Title(参考訳): 非熟練者を対象とした科学文章の簡易化
- Authors: Bj\"orn Engelmann, Fabian Haak, Christin Katharina Kreutz, Narjes
Nikzad Khasmakhi, Philipp Schaer
- Abstract要約: 科学的な抽象化の単純化は、非専門家がコア情報にアクセスするのに役立つ。
これは、例えば、新しい治療法について読んでいるがん患者に特に関係している。
- 参考スコア(独自算出の注目度): 3.4761212729163318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reading levels are highly individual and can depend on a text's language, a
person's cognitive abilities, or knowledge on a topic. Text simplification is
the task of rephrasing a text to better cater to the abilities of a specific
target reader group. Simplification of scientific abstracts helps non-experts
to access the core information by bypassing formulations that require domain or
expert knowledge. This is especially relevant for, e.g., cancer patients
reading about novel treatment options. The SimpleText lab hosts the
simplification of scientific abstracts for non-experts (Task 3) to advance this
field. We contribute three runs employing out-of-the-box summarization models
(two based on T5, one based on PEGASUS) and one run using ChatGPT with complex
phrase identification.
- Abstract(参考訳): 読み上げレベルは非常に個人的であり、テキスト言語、人の認知能力、トピックに関する知識に依存します。
text simplificationは、特定のターゲットリーダーグループの能力に合うように、テキストを再構成するタスクである。
科学的な抽象概念の単純化は、非専門家がドメインや専門家の知識を必要とする定式化をバイパスすることで、コア情報にアクセスするのに役立つ。
これは、例えば、新しい治療法について読んでいるがん患者に特に関係している。
simpletext labは、非専門家のための科学的な抽象概念(タスク3)を単純化し、この分野を前進させる。
ボックス外要約モデル(2つはT5、もう1つはPEGASUS)と1つは複雑なフレーズ識別を伴うChatGPTを用いて実行している。
関連論文リスト
- People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text [37.36534911201806]
私たちは、300のノンフィクションの英語記事を読むために注釈を雇い、それを人書きまたはAI生成とラベル付けします。
実験の結果,AI生成テキストの検出において,LLMを頻繁に使用するアノテータが優れていることがわかった。
注釈付きデータセットとコードを公開し、AI生成テキストの人的および自動検出に関する将来の研究を刺激します。
論文 参考訳(メタデータ) (2025-01-26T19:31:34Z) - Reading Between the Lines: A dataset and a study on why some texts are tougher than others [0.20482269513546458]
本研究の目的は,知的障害のある特定の観衆に対して,テキストの読解が難しいことの理解を深めることである。
本稿では,心理学における経験的研究に基づく難易度アノテーションの体系について紹介する。
マルチクラス分類のタスクを実行するために,4種類の事前学習型トランスフォーマーモデルを微調整した。
論文 参考訳(メタデータ) (2025-01-03T13:09:46Z) - Evaluating LLMs for Targeted Concept Simplification for Domain-Specific Texts [53.421616210871704]
コンテクストの欠如と難解な概念に対する不慣れさは、大人の読者がドメイン固有のテキストに難渋する大きな理由である。
テキストの書き直しを簡略化し,不慣れな概念を含むテキストの理解を支援する「目標概念の簡略化」を提案する。
本研究は,オープンソースおよび商用LLMの性能と,この課題に対する簡単な辞書ベースラインのベンチマークを行う。
論文 参考訳(メタデータ) (2024-10-28T05:56:51Z) - Automating Easy Read Text Segmentation [2.7309692684728617]
読みやすいテキストは、読み難い人のための情報にアクセスするための主要な形態の1つである。
このタイプのテキストの重要な特徴の1つは、文をより小さな文法セグメントに分割する必要があることである。
マスク付きおよび生成言語モデルと構成的構文解析を併用して,タスクのための新しい手法について検討する。
論文 参考訳(メタデータ) (2024-06-17T12:25:25Z) - Digital Comprehensibility Assessment of Simplified Texts among Persons
with Intellectual Disabilities [2.446971913303003]
本研究は,タブレットコンピュータ上でドイツ語のテキストを読み取る知的障害を有する者を含むテキスト理解度の評価を行った。
複数選択的理解質問、難易度評価、応答時間、読解速度の4つの異なる方法について検討した。
知的障害者の対象群では,読解速度の分析が参加者の読解行動に有意な洞察を与える一方で,最も信頼性の高い尺度として理解的疑問が出現した。
論文 参考訳(メタデータ) (2024-02-20T15:37:08Z) - ARTIST: ARTificial Intelligence for Simplified Text [5.095775294664102]
テキスト単純化は、テキストの言語的複雑さを減らすことを目的とした、自然言語処理の重要なタスクである。
生成人工知能(AI)の最近の進歩により、語彙レベルと構文レベルの両方で自動テキストの簡略化が可能になった。
論文 参考訳(メタデータ) (2023-08-25T16:06:06Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Multilingual Simplification of Medical Texts [49.469685530201716]
4つの言語で医療領域のための文章整列型多言語テキスト単純化データセットであるMultiCochraneを紹介する。
これらの言語にまたがる微調整およびゼロショットモデルの評価を行い,人間による評価と分析を行った。
モデルは、実行可能な単純化されたテキストを生成することができるが、このデータセットが扱う可能性のある、卓越した課題を特定する。
論文 参考訳(メタデータ) (2023-05-21T18:25:07Z) - SCROLLS: Standardized CompaRison Over Long Language Sequences [62.574959194373264]
SCROLLSは長いテキストに対する推論を必要とするタスクのスイートである。
SCROLLSには要約、質問応答、自然言語推論タスクが含まれる。
すべてのデータセットを統一されたテキスト・ツー・テキスト形式で利用可能にし、モデルアーキテクチャと事前学習方法の研究を容易にするために、ライブのリーダーボードをホストします。
論文 参考訳(メタデータ) (2022-01-10T18:47:15Z) - CORE-Text: Improving Scene Text Detection with Contrastive Relational
Reasoning [65.57338873921168]
自然界におけるテキストインスタンスのローカライズは、コンピュータビジョンにおける根本的な課題であると考えられている。
本研究では,サブテキスト問題を定量的に解析し,シンプルで効果的な設計であるContrastive Relation(CORE)モジュールを提案する。
我々は、COREモジュールをMask R-CNNの2段階テキスト検出器に統合し、テキスト検出器CORE-Textを考案する。
論文 参考訳(メタデータ) (2021-12-14T16:22:25Z) - How to Train Your Agent to Read and Write [52.24605794920856]
研究論文の読み書きは、資格のある研究者が習得すべき最も特権のある能力の1つである。
読者が論文を読み、要約できるようにインテリジェントなエージェントを訓練し、おそらく新しい論文を書くための潜在的な知識の手がかりを発見し、活用できれば、それは魅力的です。
本研究では,入力段落から知識グラフ(KG)を抽出して潜在的な知識を発見できるtextitReader,新規段落を生成するgraph-to-text TextitWriter,およびtextitから構成されるDeep ReAder-Writer(DRAW)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-01-04T12:22:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。