Simulation-assisted learning of open quantum systems
- URL: http://arxiv.org/abs/2307.03858v3
- Date: Tue, 9 Jul 2024 02:36:55 GMT
- Title: Simulation-assisted learning of open quantum systems
- Authors: Ke Wang, Xiantao Li,
- Abstract summary: This paper presents a learning method to infer parameters in Markovian open quantum systems from measurement data.
The method is validated with error estimates and numerical experiments.
- Score: 3.1003326924534482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models for open quantum systems, which play important roles in electron transport problems and quantum computing, must take into account the interaction of the quantum system with the surrounding environment. Although such models can be derived in some special cases, in most practical situations, the exact models are unknown and have to be calibrated. This paper presents a learning method to infer parameters in Markovian open quantum systems from measurement data. One important ingredient in the method is a direct simulation technique of the quantum master equation, which is designed to preserve the completely-positive property with guaranteed accuracy. The method is particularly helpful in the situation where the time intervals between measurements are large. The approach is validated with error estimates and numerical experiments.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Efficient measurement schemes for bosonic systems [1.4781921087738965]
Boson is one of the most basic particles and preserves the commutation relation.
We numerically test the schemes for measuring nuclei vibrations simulated using a discrete quantum computer.
arXiv Detail & Related papers (2022-10-24T20:14:23Z) - The randomized measurement toolbox [3.2095357952052854]
We review recently developed protocols for probing the properties of complex many-qubit systems.
In all these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis.
We discuss a range of use cases that have already been realized in quantum devices.
arXiv Detail & Related papers (2022-03-21T22:33:18Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Estimation of one-dimensional discrete-time quantum walk parameters by
using machine learning algorithms [1.7396274240172125]
We present the estimation of the quantum coin parameter used for one-dimensional discrete-time quantum walk evolution.
We show that the models we have implemented are able to estimate these evolution parameters to a good accuracy level.
arXiv Detail & Related papers (2020-07-09T06:08:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.