論文の概要: A Tale of Two Cities: Pessimism and Opportunism in Offline Dynamic Pricing
- arxiv url: http://arxiv.org/abs/2411.08126v1
- Date: Tue, 12 Nov 2024 19:09:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:50.139808
- Title: A Tale of Two Cities: Pessimism and Opportunism in Offline Dynamic Pricing
- Title(参考訳): 2都市物語:オフライン動的価格における悲観主義と機会主義
- Authors: Zeyu Bian, Zhengling Qi, Cong Shi, Lan Wang,
- Abstract要約: 本稿では,データカバレッジを前提としないオフライン動的価格について検討する。
我々は、関連する価格が観測されていない需要パラメータに限定した部分的識別を確立する。
提案した部分的識別枠組みに悲観的・機会論的戦略を取り入れて,推定方針を導出する。
- 参考スコア(独自算出の注目度): 20.06425698412548
- License:
- Abstract: This paper studies offline dynamic pricing without data coverage assumption, thereby allowing for any price including the optimal one not being observed in the offline data. Previous approaches that rely on the various coverage assumptions such as that the optimal prices are observable, would lead to suboptimal decisions and consequently, reduced profits. We address this challenge by framing the problem to a partial identification framework. Specifically, we establish a partial identification bound for the demand parameter whose associated price is unobserved by leveraging the inherent monotonicity property in the pricing problem. We further incorporate pessimistic and opportunistic strategies within the proposed partial identification framework to derive the estimated policy. Theoretically, we establish rate-optimal finite-sample regret guarantees for both strategies. Empirically, we demonstrate the superior performance of the newly proposed methods via a synthetic environment. This research provides practitioners with valuable insights into offline pricing strategies in the challenging no-coverage setting, ultimately fostering sustainable growth and profitability of the company.
- Abstract(参考訳): 本稿では,データカバレッジの仮定を伴わないオフライン動的価格について検討し,オフラインデータで観測されない最適値を含む任意の価格について検討する。
最適価格が観測可能であり、最適以下の決定を導き、その結果利益を減少させるといった、様々な範囲の仮定に依存する以前のアプローチ。
この課題に対処するために、問題を部分的識別フレームワークにフレーミングする。
具体的には、価格問題における固有の単調性を利用して、関連する価格が観測されない需要パラメータに対する部分的識別を確立する。
さらに,提案した部分的識別枠組みに悲観的・機会論的戦略を取り入れて,推定方針を導出する。
理論的には、両方の戦略に対して、速度最適化有限サンプル後悔保証を確立する。
実験により,新たに提案した手法の優れた性能を合成環境を用いて実証した。
この調査は、オフラインの価格戦略に関する貴重な洞察を、挑戦的なノーカバー環境で提供し、最終的には企業の持続的な成長と収益性を促進する。
関連論文リスト
- A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Model-Free $\mu$-Synthesis: A Nonsmooth Optimization Perspective [4.477225073240389]
本稿では,重要なポリシー検索ベンチマーク,すなわち$mu$- synthesisを再考する。
本研究では, 段階的な探索手法が, 実際に顕著な数値的な結果をもたらしていることを示す。
論文 参考訳(メタデータ) (2024-02-18T17:17:17Z) - Utility Fairness in Contextual Dynamic Pricing with Demand Learning [23.26236046836737]
本稿では,ユーティリティフェアネス制約下でのパーソナライズされた価格設定のための新しいコンテキスト帯域幅アルゴリズムを提案する。
動的価格設定と需要学習を取り入れた当社のアプローチは,価格戦略における公正性の重要課題に対処する。
論文 参考訳(メタデータ) (2023-11-28T05:19:23Z) - Contextual Dynamic Pricing with Strategic Buyers [93.97401997137564]
戦略的買い手によるコンテキスト動的価格問題について検討する。
売り手は買い手の真の特徴を観察せず、買い手の戦略行動に応じて操作された特徴を観察する。
本稿では,販売者の累積収益を最大化するために,購入者の戦略的行動をオンライン学習に取り入れた戦略的動的価格政策を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:06:42Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Personalized Pricing with Invalid Instrumental Variables:
Identification, Estimation, and Policy Learning [5.372349090093469]
本研究は,インストゥルメンタル変数アプローチを用いて,内在性の下でのオフラインパーソナライズド価格について検討する。
Invalid iNsTrumental変数を用いたパーソナライズされたプライシングのための新しいポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T14:50:47Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
未測定の共同設立者を対象にオフライン強化学習(RL)について検討した。
そこで本稿では, 最適クラスポリシーを見つけるための, 有限サンプルの準最適性を保証した多種多様なポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T22:03:55Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Online Regularization towards Always-Valid High-Dimensional Dynamic
Pricing [19.11333865618553]
本稿では,動的価格ポリシーに基づくオンライン統計学習を理論的保証付きで設計するための新しい手法を提案する。
提案手法は,提案する楽観的オンライン定期化最大価格(OORMLP)に3つの大きな利点がある。
理論的には,提案したOORMLPアルゴリズムは高次元モデルの空間構造を利用し,決定の地平線における対数的後悔を保証する。
論文 参考訳(メタデータ) (2020-07-05T23:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。