論文の概要: ECL: Class-Enhancement Contrastive Learning for Long-tailed Skin Lesion
Classification
- arxiv url: http://arxiv.org/abs/2307.04136v1
- Date: Sun, 9 Jul 2023 09:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 15:09:20.094812
- Title: ECL: Class-Enhancement Contrastive Learning for Long-tailed Skin Lesion
Classification
- Title(参考訳): ECL:ロングテール皮膚病変分類のためのクラスエンハンスメントコントラスト学習
- Authors: Yilan Zhang, Jianqi Chen, Ke Wang, Fengying Xie
- Abstract要約: 皮膚画像データセットは、しばしば不均衡なデータ分布に悩まされ、コンピュータ支援皮膚疾患の診断が困難になる。
本稿では,マイノリティクラスの情報を豊かにし,異なるクラスを平等に扱うクラス・エンハンスメント・コントラシティブ・ラーニング(ECL)を提案する。
- 参考スコア(独自算出の注目度): 7.7379419801373475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin image datasets often suffer from imbalanced data distribution,
exacerbating the difficulty of computer-aided skin disease diagnosis. Some
recent works exploit supervised contrastive learning (SCL) for this long-tailed
challenge. Despite achieving significant performance, these SCL-based methods
focus more on head classes, yet ignoring the utilization of information in tail
classes. In this paper, we propose class-Enhancement Contrastive Learning
(ECL), which enriches the information of minority classes and treats different
classes equally. For information enhancement, we design a hybrid-proxy model to
generate class-dependent proxies and propose a cycle update strategy for
parameters optimization. A balanced-hybrid-proxy loss is designed to exploit
relations between samples and proxies with different classes treated equally.
Taking both "imbalanced data" and "imbalanced diagnosis difficulty" into
account, we further present a balanced-weighted cross-entropy loss following
curriculum learning schedule. Experimental results on the classification of
imbalanced skin lesion data have demonstrated the superiority and effectiveness
of our method.
- Abstract(参考訳): 皮膚画像データセットは、しばしば不均衡なデータ分布に悩まされ、コンピュータ支援皮膚疾患の診断が困難になる。
最近の研究では、この長い課題に対して教師付きコントラスト学習(SCL)を活用している。
性能は高いが、これらのSCLベースの手法はヘッドクラスに重点を置いているが、テールクラスにおける情報の利用は無視している。
本稿では,マイノリティクラスの情報を充実させ,異なるクラスを等しく扱う,ecl(class-enhancement contrastive learning)を提案する。
情報強化のために,クラス依存プロキシを生成するハイブリッドプロキシモデルを設計し,パラメータ最適化のためのサイクル更新戦略を提案する。
balanced-hybrid-proxy lossは、異なるクラスで等しく扱われるサンプルとプロキシの関係を利用するように設計されている。
さらに,「不均衡データ」と「不均衡診断困難」を考慮に入れ,カリキュラム学習スケジュールに従って,バランスのとれたクロスエントロピー損失を示す。
不均衡皮膚病変データの分類実験の結果,本手法の優位性と有効性が確認された。
関連論文リスト
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
医用画像の分類性能に関する連続学習戦略(CL)の行動について検討した。
我々は,リプレイ,フォーッティングなし学習(LwF),LwF,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
論文 参考訳(メタデータ) (2024-04-10T09:48:52Z) - Iterative Online Image Synthesis via Diffusion Model for Imbalanced
Classification [29.730360798234294]
医用画像分類におけるクラス不均衡問題に対処するための反復オンライン画像合成フレームワークを提案する。
このフレームワークにはオンライン画像合成(OIS)と精度適応サンプリング(AAS)という2つの重要なモジュールが組み込まれている。
不均衡な分類に対処するための提案手法の有効性を評価するため,HAM10000およびAPTOSデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-03-13T10:51:18Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
本研究では,不均衡なイベント検出タスクのための不確実性誘導型クラス不均衡学習フレームワークを提案する。
我々のモデルは、ほとんど全てのクラス、特に不確実なクラスにおいて、社会イベントの表現と分類タスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-10-30T03:32:04Z) - An Asymmetric Contrastive Loss for Handling Imbalanced Datasets [0.0]
ACLと呼ばれる非対称なCLを導入し、クラス不均衡の問題に対処する。
さらに,非対称な焦点コントラスト損失(AFCL)をACLと焦点コントラスト損失の両方のさらなる一般化として提案する。
FMNISTとISIC 2018の不均衡データセットの結果、AFCLは重み付けと非重み付けの両方の分類精度でCLとFCLを上回っていることが示された。
論文 参考訳(メタデータ) (2022-07-14T17:30:13Z) - Deep Reinforcement Learning for Multi-class Imbalanced Training [64.9100301614621]
我々は、極めて不均衡なデータセットをトレーニングするために、強化学習に基づく不均衡な分類フレームワークを導入する。
特注報酬関数とエピソード学習手順を定式化し、特にマルチクラス不均衡トレーニングを扱えるようにした。
実世界の臨床ケーススタディを用いて,提案手法が現状の非バランス学習法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T13:39:59Z) - SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification [9.265557367859637]
SuperConは、皮膚病変分類におけるクラス不均衡問題を克服するための2段階のトレーニング戦略である。
2段階のトレーニング戦略は,クラス不均衡の分類問題に効果的に対処し,F1スコアとAUCスコアの点で既存の作業を大幅に改善する。
論文 参考訳(メタデータ) (2022-02-11T15:19:36Z) - Semi-supervised learning for medical image classification using
imbalanced training data [11.87832944550453]
本稿では,摂動型SSL方式における整合性損失の代替として,適応的Blended Consistency Loss (ABCL)を提案する。
ABCLは、クラス周波数に応じて、目標とする一貫性損失のクラス分布を適応的に混合してデータスキューに対処する。
ABCLを用いた実験により,2つの不均衡な医用画像分類データセットにおける非重み付き平均リコールの改善が示された。
論文 参考訳(メタデータ) (2021-08-20T01:06:42Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Alleviating the Incompatibility between Cross Entropy Loss and Episode
Training for Few-shot Skin Disease Classification [76.89093364969253]
そこで本研究では,皮膚疾患の診断にFew-Shot Learningを応用し,トレーニングサンプル問題の極端な不足に対処することを提案する。
本稿では, エピソード学習において, クロスエントロピー(CE)よりも優れたクエリ-相対的損失(QR)を提案する。
さらに,新しい適応型ハードマージン戦略により,提案したQR損失をさらに強化する。
論文 参考訳(メタデータ) (2020-04-21T00:57:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。