論文の概要: Generalizing Graph ODE for Learning Complex System Dynamics across
Environments
- arxiv url: http://arxiv.org/abs/2307.04287v1
- Date: Mon, 10 Jul 2023 00:29:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 14:30:20.868275
- Title: Generalizing Graph ODE for Learning Complex System Dynamics across
Environments
- Title(参考訳): 環境を越えた複雑なシステムダイナミクス学習のためのグラフODEの一般化
- Authors: Zijie Huang and Yizhou Sun and Wei Wang
- Abstract要約: GG-ODEは、環境全体にわたる継続的マルチエージェントシステムのダイナミクスを学習するための機械学習フレームワークである。
我々のモデルは、グラフニューラルネットワーク(GNN)によりパラメータ化されたニューラル常微分方程式(ODE)を用いてシステムダイナミクスを学習する。
様々な物理シミュレーション実験により,我々のモデルは,特に長距離において,システム力学を正確に予測できることが示されている。
- 参考スコア(独自算出の注目度): 33.63818978256567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning multi-agent system dynamics has been extensively studied for various
real-world applications, such as molecular dynamics in biology. Most of the
existing models are built to learn single system dynamics from observed
historical data and predict the future trajectory. In practice, however, we
might observe multiple systems that are generated across different
environments, which differ in latent exogenous factors such as temperature and
gravity. One simple solution is to learn multiple environment-specific models,
but it fails to exploit the potential commonalities among the dynamics across
environments and offers poor prediction results where per-environment data is
sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary
Differential Equations), a machine learning framework for learning continuous
multi-agent system dynamics across environments. Our model learns system
dynamics using neural ordinary differential equations (ODE) parameterized by
Graph Neural Networks (GNNs) to capture the continuous interaction among
agents. We achieve the model generalization by assuming the dynamics across
different environments are governed by common physics laws that can be captured
via learning a shared ODE function. The distinct latent exogenous factors
learned for each environment are incorporated into the ODE function to account
for their differences. To improve model performance, we additionally design two
regularization losses to (1) enforce the orthogonality between the learned
initial states and exogenous factors via mutual information minimization; and
(2) reduce the temporal variance of learned exogenous factors within the same
system via contrastive learning. Experiments over various physical simulations
show that our model can accurately predict system dynamics, especially in the
long range, and can generalize well to new systems with few observations.
- Abstract(参考訳): マルチエージェントシステムダイナミクスの学習は、生物学における分子動力学など、様々な現実世界の応用のために広く研究されている。
既存のモデルのほとんどは、観測された履歴データから単一のシステムダイナミクスを学び、将来の軌道を予測するために作られている。
しかし実際には、温度や重力などの潜伏する外因性要因が異なる異なる環境にまたがって生成される複数の系を観測することができる。
ひとつの単純な解決策は、複数の環境固有のモデルを学ぶことだが、環境間のダイナミクス間の潜在的な共通性を活用できず、環境ごとのデータ不足や限定的な予測結果を提供する。
本稿では,環境間の連続的マルチエージェントシステムダイナミクスを学習するための機械学習フレームワークであるgg-ode(generalized graph normal differential equation)を提案する。
本モデルは,グラフニューラルネットワーク(GNN)によってパラメータ化されたニューラル常微分方程式(ODE)を用いてシステム力学を学習し,エージェント間の連続的な相互作用を捉える。
我々は,共有ode関数を学習することで得られる共通物理法則によって異なる環境をまたいだ力学が支配されることを仮定し,モデル一般化を実現する。
各環境で学習された異なる潜伏性外因性因子は、それらの相違を考慮するためにODE関数に組み込まれる。
モデル性能を向上させるために,(1)学習初期状態と外因性要因の正統性を相互情報最小化により強制する2つの正規化損失を設計し,(2)学習外因性要因の時間的分散を対照的な学習により低減する。
様々な物理シミュレーション実験により,我々のモデルは,特に長距離における系力学を正確に予測し,観測の少ない新系に最適化できることが示されている。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - SpReME: Sparse Regression for Multi-Environment Dynamic Systems [6.7053978622785415]
本研究では,SpReMEと呼ばれるスパースレグレッションの手法を開発し,複数の環境を基盤とする主要な力学を明らかにする。
提案モデルでは,予測性能を向上した4つの動的システム上で,複数の環境から正しいダイナミクスを捕捉することを示した。
論文 参考訳(メタデータ) (2023-02-12T15:45:50Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
グラフ構造を持つ多エージェント動的システムをモデル化するための潜在常微分方程式生成モデルLG-ODEを提案する。
高次元軌跡の埋め込みと連続潜伏系力学を同時に学習することができる。
我々のモデルは、教師なしの方法で初期状態を推論できるグラフニューラルネットワークによってパラメータ化された新しいエンコーダを採用している。
論文 参考訳(メタデータ) (2020-11-08T01:02:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。