論文の概要: Scientific machine learning in ecological systems: A study on the predator-prey dynamics
- arxiv url: http://arxiv.org/abs/2411.06858v1
- Date: Mon, 11 Nov 2024 10:40:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:13:00.303609
- Title: Scientific machine learning in ecological systems: A study on the predator-prey dynamics
- Title(参考訳): 生態システムにおける科学機械学習:捕食者-捕食者のダイナミクスに関する研究
- Authors: Ranabir Devgupta, Raj Abhijit Dandekar, Rajat Dandekar, Sreedath Panat,
- Abstract要約: 我々は、学習データやニューラルネットワークにのみ依存して、システムの事前の知識なしに、基礎となる微分方程式を明らかにすることを目指している。
本稿では,LotkaVolterraシステムの予測と予測に,Neural ODEとUDEの両方を効果的に活用できることを実証する。
基礎となるダイナミクスを効果的に回復し、トレーニングデータを大幅に減らして正確な予測を行うことで、UDEがニューラルODEより優れているかを観察した。
- 参考スコア(独自算出の注目度): 1.4633779950109127
- License:
- Abstract: In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Lotka Volterra Predator Prey Model, a fundamental ecological model describing the dynamic interactions between predator and prey populations. The Lotka-Volterra model is critical for understanding ecological dynamics, population control, and species interactions, as it is represented by a system of differential equations. In this work, we aim to uncover the underlying differential equations without prior knowledge of the system, relying solely on training data and neural networks. Using robust modeling in the Julia programming language, we demonstrate that both Neural ODEs and UDEs can be effectively utilized for prediction and forecasting of the Lotka-Volterra system. More importantly, we introduce the forecasting breakdown point: the time at which forecasting fails for both Neural ODEs and UDEs. We observe how UDEs outperform Neural ODEs by effectively recovering the underlying dynamics and achieving accurate forecasting with significantly less training data. Additionally, we introduce Gaussian noise of varying magnitudes (from mild to high) to simulate real-world data perturbations and show that UDEs exhibit superior robustness, effectively recovering the underlying dynamics even in the presence of noisy data, while Neural ODEs struggle with high levels of noise. Through extensive hyperparameter optimization, we offer insights into neural network architectures, activation functions, and optimizers that yield the best results. This study opens the door to applying Scientific Machine Learning frameworks for forecasting tasks across a wide range of ecological and scientific domains.
- Abstract(参考訳): 本研究では,ニューラル正規微分方程式(Neural ODEs)とユニバーサル微分方程式(Universal Differential Equations,UDEs)の2つの柱を,捕食者と捕食者の動的相互作用を記述する基本的な生態モデルであるLotka Volterra Predator Prey Modelに適用する。
Lotka-Volterraモデルは、微分方程式の系で表されるように、生態力学、個体群制御、種間の相互作用を理解するために重要である。
本研究では,学習データやニューラルネットワークにのみ依存して,システムの事前知識を必要とせず,基礎となる微分方程式を明らかにすることを目的とする。
ユリアプログラミング言語のロバストなモデリングを用いて、ニューラルODEとUDEの両方がロトカ・ボルテラシステムの予測と予測に有効に利用できることを示した。
さらに重要なことは、予測ブレークダウンポイント(予測がニューラルODEとUDEの両方で失敗する時間)を紹介します。
基礎となるダイナミクスを効果的に回復し、トレーニングデータを大幅に減らして正確な予測を行うことで、UDEがニューラルODEより優れているかを観察した。
さらに、実世界のデータ摂動をシミュレートするために、様々な大きさのガウスノイズを導入し、UDEが優れた堅牢性を示し、ノイズの多いデータであっても基礎となるダイナミクスを効果的に回復し、ニューラルODEは高レベルのノイズに苦しむことを示す。
広範なハイパーパラメータ最適化を通じて、ニューラルネットワークアーキテクチャ、アクティベーション関数、そして最良の結果をもたらすオプティマイザに関する洞察を提供する。
本研究は,様々な生態学・科学的領域におけるタスク予測にScience Machine Learningフレームワークを適用するための扉を開く。
関連論文リスト
- Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODEは、NODEで動的システムのモデリングを行うための、最初の半教師付きアプローチである。
複数の動的システムモデリングタスクにおいて,ベースラインのNeural ODEモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-19T19:17:12Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Knowledge-based Deep Learning for Modeling Chaotic Systems [7.075125892721573]
本稿では,極端事象とその力学を考察し,知識ベースディープラーニング(KDL)と呼ばれる,深層ニューラルネットワークに基づくモデルを提案する。
提案するKDLは,実データとシミュレーションデータとの協調学習により,カオスシステムを管理する複雑なパターンを学習することができる。
我々は,エルニーニョ海表面温度,サンフアン・デング熱感染,ブヨルノヤ日降水という3つの実世界のベンチマークデータセットを用いて,我々のモデルを検証した。
論文 参考訳(メタデータ) (2022-09-09T11:46:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。