Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains
- URL: http://arxiv.org/abs/2307.04378v3
- Date: Fri, 21 Jul 2023 09:13:55 GMT
- Title: Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains
- Authors: Haoxuan Che, Yuhan Cheng, Haibo Jin, Hao Chen
- Abstract summary: We propose a novel unified framework named Generalizable Diabetic Retinopathy Grading Network (GDRNet)
GDRNet consists of three vital components: fundus visual-artifact augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and domain-class-aware re-balancing (DCR)
- Score: 6.147573427718534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic Retinopathy (DR) is a common complication of diabetes and a leading
cause of blindness worldwide. Early and accurate grading of its severity is
crucial for disease management. Although deep learning has shown great
potential for automated DR grading, its real-world deployment is still
challenging due to distribution shifts among source and target domains, known
as the domain generalization problem. Existing works have mainly attributed the
performance degradation to limited domain shifts caused by simple visual
discrepancies, which cannot handle complex real-world scenarios. Instead, we
present preliminary evidence suggesting the existence of three-fold
generalization issues: visual and degradation style shifts, diagnostic pattern
diversity, and data imbalance. To tackle these issues, we propose a novel
unified framework named Generalizable Diabetic Retinopathy Grading Network
(GDRNet). GDRNet consists of three vital components: fundus visual-artifact
augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and
domain-class-aware re-balancing (DCR). FundusAug generates realistic augmented
images via visual transformation and image degradation, while DahLoss jointly
leverages pixel-level consistency and image-level semantics to capture the
diverse diagnostic patterns and build generalizable feature representations.
Moreover, DCR mitigates the data imbalance from a domain-class view and avoids
undesired over-emphasis on rare domain-class pairs. Finally, we design a
publicly available benchmark for fair evaluations. Extensive comparison
experiments against advanced methods and exhaustive ablation studies
demonstrate the effectiveness and generalization ability of GDRNet.
Related papers
- Divergent Domains, Convergent Grading: Enhancing Generalization in Diabetic Retinopathy Grading [8.59772105902647]
Diabetic Retinopathy (DR) constitutes 5% of global blindness cases.
We introduce a novel deep learning method for achieving domain generalization (DG) in DR grading.
Our method demonstrates significant improvements over the strong Empirical Risk Minimization baseline.
arXiv Detail & Related papers (2024-11-04T21:09:24Z) - DRStageNet: Deep Learning for Diabetic Retinopathy Staging from Fundus
Images [3.4456298317539313]
Timely identification is critical to curb vision impairment.
Models often fail to generalize due to distribution shifts between the source domain on which the model was trained and the target domain where it is deployed.
We introduce DRStageNet, a deep learning model designed to mitigate this challenge.
arXiv Detail & Related papers (2023-12-22T18:09:20Z) - CauDR: A Causality-inspired Domain Generalization Framework for
Fundus-based Diabetic Retinopathy Grading [11.982719279583002]
A computer-aided DR grading system has a significant impact on helping ophthalmologists with rapid screening and diagnosis.
Recent advances in fundus photography have precipitated the development of novel retinal imaging cameras.
Most deep learning-based algorithms for DR grading demonstrate limited generalization across domains.
arXiv Detail & Related papers (2023-09-27T08:43:49Z) - Exploring the Transfer Learning Capabilities of CLIP in Domain
Generalization for Diabetic Retinopathy [7.649900082537232]
Cross-domain generalization is a challenging problem in the medical domain.
Recent studies have shown the effectiveness of using CLIP to handle the DG problem in natural images.
In this study, we investigate CLIP's transfer learning capabilities and its potential for cross-domain generalization in diabetic retinopathy (DR) classification.
arXiv Detail & Related papers (2023-08-27T22:02:41Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.