論文の概要: Model-Driven Engineering Method to Support the Formalization of Machine
Learning using SysML
- arxiv url: http://arxiv.org/abs/2307.04495v1
- Date: Mon, 10 Jul 2023 11:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 13:22:51.639702
- Title: Model-Driven Engineering Method to Support the Formalization of Machine
Learning using SysML
- Title(参考訳): SysMLを用いた機械学習の形式化を支援するモデル駆動工学手法
- Authors: Simon Raedler, Juergen Mangler, Stefanie Rinderle-Ma
- Abstract要約: 本研究は,モデルベース工学を活用した機械学習タスクの協調的定義を支援する手法を提案する。
この方法は、様々なデータソースの識別と統合、データ属性間のセマンティックな関係の定義、データ処理ステップの定義をサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods: This work introduces a method supporting the collaborative
definition of machine learning tasks by leveraging model-based engineering in
the formalization of the systems modeling language SysML. The method supports
the identification and integration of various data sources, the required
definition of semantic connections between data attributes, and the definition
of data processing steps within the machine learning support.
Results: By consolidating the knowledge of domain and machine learning
experts, a powerful tool to describe machine learning tasks by formalizing
knowledge using the systems modeling language SysML is introduced. The method
is evaluated based on two use cases, i.e., a smart weather system that allows
to predict weather forecasts based on sensor data, and a waste prevention case
for 3D printer filament that cancels the printing if the intended result cannot
be achieved (image processing). Further, a user study is conducted to gather
insights of potential users regarding perceived workload and usability of the
elaborated method.
Conclusion: Integrating machine learning-specific properties in systems
engineering techniques allows non-data scientists to understand formalized
knowledge and define specific aspects of a machine learning problem, document
knowledge on the data, and to further support data scientists to use the
formalized knowledge as input for an implementation using (semi-) automatic
code generation. In this respect, this work contributes by consolidating
knowledge from various domains and therefore, fosters the integration of
machine learning in industry by involving several stakeholders.
- Abstract(参考訳): 方法: 本研究は,システムモデリング言語sysmlの形式化において,モデルに基づく工学を活用し,機械学習タスクの協調的定義を支援する手法を提案する。
この方法は、さまざまなデータソースの識別と統合、データ属性間のセマンティック接続の必要な定義、機械学習サポート内のデータ処理ステップの定義をサポートする。
結果: ドメインと機械学習の専門家の知識を統合することで,システムモデリング言語SysMLを用いた知識の形式化により,機械学習タスクを記述する強力なツールが導入された。
この方法は、センサデータに基づいて天気予報を予測できるスマート気象システムと、意図された結果が得られない場合の印刷を中止する3Dプリンタフィラメントの廃棄物防止ケース(画像処理)の2つのユースケースに基づいて評価される。
さらに, ユーザ調査を行い, 作業負荷の知覚とユーザビリティについて, 潜在ユーザからの洞察を収集した。
結論: システム工学技術に機械学習固有の特性を統合することで、非データ科学者は形式化された知識を理解し、機械学習問題の特定の側面を定義し、データに関する知識を文書化し、さらにデータ科学者が形式化された知識を(半)自動コード生成を用いた実装のインプットとして使用するように支援することができる。
この点において、この研究は様々な分野の知識を集約することで貢献し、複数の利害関係者を巻き込むことで産業における機械学習の統合を促進する。
関連論文リスト
- Extraction of Research Objectives, Machine Learning Model Names, and Dataset Names from Academic Papers and Analysis of Their Interrelationships Using LLM and Network Analysis [0.0]
本研究では,研究論文からタスクや機械学習手法,データセット名を抽出する手法を提案する。
提案手法の表現抽出性能は,Llama3を用いた場合,様々なカテゴリでFスコアが0.8を超えている。
ファイナンシャルドメイン論文のベンチマーク結果は,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-22T03:10:52Z) - Informed Meta-Learning [55.2480439325792]
メタラーニングとインシデントMLは、事前知識をMLパイプラインに組み込むための2つのアプローチとして際立っている。
我々は,非構造化知識表現からの事前の取り込みを容易にする,情報メタラーニングというハイブリッドパラダイムを定式化する。
データ効率、観測ノイズに対する堅牢性、タスク分散シフトを改善する上で、情報メタラーニングの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Code Generation for Machine Learning using Model-Driven Engineering and
SysML [0.0]
この研究は、機械学習タスクを形式化する以前の作業を拡張して、実践的なデータ駆動エンジニアリングの実装を促進することを目的としている。
本手法は,天気予報のためのケーススタディにおいて,実現可能性について評価した。
結果は、実装の労力を減らす方法の柔軟性と単純さを示します。
論文 参考訳(メタデータ) (2023-07-10T15:00:20Z) - Designing Explainable Predictive Machine Learning Artifacts: Methodology
and Practical Demonstration [0.0]
さまざまな業界の企業による意思決定者は、現代の機械学習アルゴリズムに基づくアプリケーションを採用することに、いまだに消極的だ。
我々はこの問題を、高度な機械学習アルゴリズムを「ブラックボックス」として広く支持されている見解に当てはめている。
本研究では,設計科学研究から方法論的知識を統一する手法を開発し,最先端の人工知能を用いた予測分析手法を提案する。
論文 参考訳(メタデータ) (2023-06-20T15:11:26Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
データ前処理と変換パイプラインをサポートするために、ALOHAツールフローに統合されたモジュラーアプローチに対処する。
提案手法の有効性を示すために,キーワードスポッティングのユースケースに関する実験結果を示す。
論文 参考訳(メタデータ) (2021-02-02T06:48:51Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。