An exactly solvable dissipative spin liquid
- URL: http://arxiv.org/abs/2307.05743v3
- Date: Fri, 19 Jan 2024 16:56:17 GMT
- Title: An exactly solvable dissipative spin liquid
- Authors: Henry Shackleton and Mathias S. Scheurer
- Abstract summary: We study a Lindbladian, describing a square-lattice spin-liquid with dissipative coupling to the environment, that admits an exact solution in terms of Majorana fermions coupled to $mathZ$ gauge fields.
This solution allows us to characterize the steady-state solutions as well as quasiparticle'' excitations within the Lindbladian spectrum.
This exactly solvable Lindbladian is expected to provide a starting point for a better understanding of the behavior of fractionalized systems under dissipative time evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exactly solvable Hamiltonians with spin liquid ground states have proven to
be extremely useful, not only because they unambiguously demonstrate that these
phases can arise in systems of interacting spins but also as a pedagogical
illustration of the concept and as a controlled starting point for further
theoretical analysis. However, adding dissipative couplings to the environment
- an important aspect for the realization of these phases - generically spoils
the exact solvability. We here present and study a Lindbladian, describing a
square-lattice spin-liquid with dissipative coupling to the environment, that
admits an exact solution in terms of Majorana fermions coupled to static
$\mathbb{Z}_2$ gauge fields. This solution allows us to characterize the
steady-state solutions as well as ``quasiparticle'' excitations within the
Lindbladian spectrum. This emergence of distinct types of quasiparticle
excitations of the Lindbladian leads to a separation of timescales that govern
the equilibration time of the expectation values of different classes of
observables, some of which we identify as fractionalized string-like operators.
This exactly solvable Lindbladian is expected to provide a starting point for a
better understanding of the behavior of fractionalized systems under
dissipative time evolution.
Related papers
- Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Real-time broadening of bath-induced density profiles from closed-system
correlation functions [0.0]
We investigate the nonequilibrium dynamics of spin chains with a local coupling to a single Lindblad bath.
We show that closed and open approaches to quantum transport agree strictly.
arXiv Detail & Related papers (2022-10-19T13:09:23Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Lindbladian dissipation of strongly-correlated quantum matter [0.9290757451344674]
The Sachdev-Ye-Kitaev Lindbladian is a paradigmatic solvable model of dissipative many-body quantum chaos.
Analytical progress is possible by developing a mean-field theory for the Liouvillian time evolution on the Keldysh contour.
arXiv Detail & Related papers (2021-12-22T18:17:52Z) - Dynamics of Fluctuations in Quantum Simple Exclusion Processes [0.0]
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions.
We show that fluctuations of the fermionic degrees of freedom obey evolution equations of Lindblad type, and derive the corresponding Lindbladians.
We carry out a detailed analysis of the steady states and slow modes that govern the late time behaviour and show that the dynamics of fluctuations of observables is described in terms of closed sets of coupled linear differential-difference equations.
arXiv Detail & Related papers (2021-07-06T15:02:58Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.