Quantum information diode based on a magnonic crystal
- URL: http://arxiv.org/abs/2307.06047v1
- Date: Wed, 12 Jul 2023 09:50:33 GMT
- Title: Quantum information diode based on a magnonic crystal
- Authors: Rohit K. Shukla, Levan Chotorlishvili, Vipin Vijayan, Harshit Verma,
Arthur Ernst, Stuart S. P. Parkin and Sunil K. Mishra
- Abstract summary: We exploit the effect of nonreciprocal magnons in a system with no inversion symmetry.
A quantum information diode can be fabricated from an yttrium iron garnet (YIG) film.
We show that rectification of the flaw of quantum information can be controlled efficiently by an external electric field and magnetoelectric effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploiting the effect of nonreciprocal magnons in a system with no inversion
symmetry, we propose a concept of a quantum information diode, {\it i.e.}, a
device rectifying the amount of quantum information transmitted in the opposite
directions. We control the asymmetric left and right quantum information
currents through an applied external electric field and quantify it through the
left and right out-of-time-ordered correlation (OTOC). To enhance the
efficiency of the quantum information diode, we utilize a magnonic crystal. We
excite magnons of different frequencies and let them propagate in opposite
directions. Nonreciprocal magnons propagating in opposite directions have
different dispersion relations. Magnons propagating in one direction match
resonant conditions and scatter on gate magnons. Therefore, magnon flux in one
direction is damped in the magnonic crystal leading to an asymmetric transport
of quantum information in the quantum information diode. A quantum information
diode can be fabricated from an yttrium iron garnet (YIG) film. This is an
experimentally feasible concept and implies certain conditions: low temperature
and small deviation from the equilibrium to exclude effects of phonons and
magnon interactions. We show that rectification of the flaw of quantum
information can be controlled efficiently by an external electric field and
magnetoelectric effects.
Related papers
- Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Directional scrambling of quantum information in helical multiferroics [0.0]
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
arXiv Detail & Related papers (2021-12-20T17:58:19Z) - Coherent control of a symmetry-engineered multi-qubit dark state in
waveguide quantum electrodynamics [0.0]
Quantum electrodynamics studies qubits coupled to a mode continuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed.
Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits.
Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.
arXiv Detail & Related papers (2021-06-10T10:06:23Z) - Exchange-Mediated Mutual Correlation and Dephasing in Free-Electron and
Light Interactions [0.0]
Correlations between quantum particles such as entanglement can be exploited to speed up computational algorithms or enable secure cryptography.
We will show that the exchange term has a substantial role in transferring the information between two mutually spin-correlated electrons.
Our findings might facilitate fermionic matter-wave interferometry experiments.
arXiv Detail & Related papers (2021-02-15T10:23:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Generation, Characterization and Manipulation of Quantum Correlations in
Electron Beams [0.0]
Entanglement engineering plays a central role in quantum-enhanced technologies.
However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information.
arXiv Detail & Related papers (2020-07-23T16:55:39Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Information transfer by quantum matterwave modulation [68.8204255655161]
We show that matterwaves can be applied for information transfer and that their quantum nature provides a high level of security.
Our technique allows transmitting a message by a non-trivial modulation of an electron matterwave in a biprism interferometer.
We also present a key distribution protocol based on the quantum nature of the matterwaves that can reveal active eavesdropping.
arXiv Detail & Related papers (2020-03-19T03:37:01Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.