論文の概要: Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence
- arxiv url: http://arxiv.org/abs/2006.14270v2
- Date: Tue, 14 Jul 2020 07:17:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 04:06:28.159504
- Title: Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence
- Title(参考訳): 超低消費電力FDSOIニューラル回路による極端ニューロモーフィックインテリジェンス
- Authors: Arianna Rubino, Can Livanelioglu, Ning Qiao, Melika Payvand, and
Giacomo Indiveri
- Abstract要約: インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
- 参考スコア(独自算出の注目度): 2.6199663901387997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen an increasing interest in the development of
artificial intelligence circuits and systems for edge computing applications.
In-memory computing mixed-signal neuromorphic architectures provide promising
ultra-low-power solutions for edge-computing sensory-processing applications,
thanks to their ability to emulate spiking neural networks in real-time. The
fine-grain parallelism offered by this approach allows such neural circuits to
process the sensory data efficiently by adapting their dynamics to the ones of
the sensed signals, without having to resort to the time-multiplexed computing
paradigm of von Neumann architectures. To reduce power consumption even
further, we present a set of mixed-signal analog/digital circuits that exploit
the features of advanced Fully-Depleted Silicon on Insulator (FDSOI)
integration processes. Specifically, we explore the options of advanced FDSOI
technologies to address analog design issues and optimize the design of the
synapse integrator and of the adaptive neuron circuits accordingly. We present
circuit simulation results and demonstrate the circuit's ability to produce
biologically plausible neural dynamics with compact designs, optimized for the
realization of large-scale spiking neural networks in neuromorphic processors.
- Abstract(参考訳): 近年、エッジコンピューティングアプリケーションのための人工知能回路やシステムの開発への関心が高まっている。
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャは、スパイクニューラルネットワークをリアルタイムでエミュレートする能力のおかげで、エッジコンピューティングのセンサー処理アプリケーションに有望な超低消費電力ソリューションを提供する。
このアプローチによって提供される微粒な並列性は、フォン・ノイマンアーキテクチャの時間多重計算パラダイムに頼ることなく、知覚された信号にそれらのダイナミクスを適用することによって、知覚データを効率的に処理することができる。
さらに電力消費を低減するため、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用した混合信号アナログ/デジタル回路を提案する。
具体的には,アナログ設計問題に対処し,シナプスインテグレータの設計と適応ニューロン回路の設計を最適化するためのfdsoi技術の選択肢を検討する。
本稿では,回路シミュレーションの結果を示し,小型設計による生物学的に妥当な神経動力学を作製する能力を示し,ニューロモルフィックプロセッサにおける大規模スパイクニューラルネットワークの実現に最適化した。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks [1.9809266426888898]
混合信号ニューロモルフィックシステムは、極端コンピューティングタスクを解決するための有望なソリューションである。
彼らのスパイクニューラルネットワーク回路は、連続的にセンサーデータをオンラインに処理するために最適化されている。
我々は,短期的アナログ力学と長期的三状態離散化機構を備えたオンチップ学習回路を設計する。
論文 参考訳(メタデータ) (2023-07-12T11:14:25Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Scalable Nanophotonic-Electronic Spiking Neural Networks [3.9918594409417576]
スパイキングニューラルネットワーク(SNN)は、高度に並列化されたリアルタイム処理が可能な新しい計算パラダイムを提供する。
フォトニックデバイスは、SNN計算パラダイムに適合する高帯域並列アーキテクチャの設計に最適である。
CMOSとSiPhの併用技術はスケーラブルなSNNコンピューティングアーキテクチャの設計に適している。
論文 参考訳(メタデータ) (2022-08-28T06:10:06Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。