論文の概要: Structural plasticity on an accelerated analog neuromorphic hardware
system
- arxiv url: http://arxiv.org/abs/1912.12047v2
- Date: Wed, 30 Sep 2020 08:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 23:57:21.698135
- Title: Structural plasticity on an accelerated analog neuromorphic hardware
system
- Title(参考訳): 加速型アナログニューロモルフィックハードウェアシステムにおける構造可塑性
- Authors: Sebastian Billaudelle, Benjamin Cramer, Mihai A. Petrovici, Korbinian
Schreiber, David Kappel, Johannes Schemmel, Karlheinz Meier
- Abstract要約: 我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
- 参考スコア(独自算出の注目度): 0.46180371154032884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computational neuroscience, as well as in machine learning, neuromorphic
devices promise an accelerated and scalable alternative to neural network
simulations. Their neural connectivity and synaptic capacity depends on their
specific design choices, but is always intrinsically limited. Here, we present
a strategy to achieve structural plasticity that optimizes resource allocation
under these constraints by constantly rewiring the pre- and gpostsynaptic
partners while keeping the neuronal fan-in constant and the connectome sparse.
In particular, we implemented this algorithm on the analog neuromorphic system
BrainScaleS-2. It was executed on a custom embedded digital processor located
on chip, accompanying the mixed-signal substrate of spiking neurons and synapse
circuits. We evaluated our implementation in a simple supervised learning
scenario, showing its ability to optimize the network topology with respect to
the nature of its training data, as well as its overall computational
efficiency.
- Abstract(参考訳): 計算神経科学や機械学習では、ニューロモルフィックデバイスはニューラルネットワークのシミュレーションに代わる、高速でスケーラブルな代替手段を約束している。
彼らの神経接続性とシナプス能力は、特定の設計選択に依存するが、本質的に制限されている。
本稿では,神経ファンイン定数とコネクトームスパースを一定に保ちつつ,前・後シナプスパートナーを常に切り替えることにより,これらの制約下で資源配分を最適化する構造的可塑性を実現する戦略を提案する。
特に,このアルゴリズムを類似のニューロモルフィックシステムbrainscales-2に実装した。
チップ上に埋め込まれた組み込みデジタルプロセッサ上で実行され、スパイキングニューロンとシナプス回路の混合シグナル基板と共に実行された。
我々は,単純な教師付き学習シナリオで実装を評価し,学習データの性質や計算効率についてネットワークトポロジーを最適化する能力を示した。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
本研究では、時間変化のアナログ信号を効率的なスパイクパターンに変換するために、スパイク時相と呼ばれるニューラルスパイク符号化モデルを導入する。
このモデルは、様々な聴覚知覚タスクにおいて、スパイクニューラルネットワークのトレーニングを容易にする、正確に制御可能なスパイクレートを備えたスパースで効率的な符号化スキームを提供する。
論文 参考訳(メタデータ) (2023-09-11T13:06:19Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
シナプス可塑性のモデル化における歴史的,ボトムアップ的,トップダウン的なアプローチを概観する。
スパイクベース学習ルールの低レイテンシおよび低消費電力ハードウェア実装をサポートする計算プリミティブを同定する。
論文 参考訳(メタデータ) (2022-09-30T15:35:04Z) - The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity [0.0]
本稿では,BrainScaleSニューロモルフィックアーキテクチャの第2世代について述べる。
バイオインスパイアされたスパイクニューラルネットワークプリミティブの、加速された物理的エミュレーションをサポートするカスタムアクセラレータコアと、密結合されたデジタルプロセッサと、イベントルーティングネットワークを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-01-26T17:13:46Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
人工神経(ANN)とスパイクニューラルネット(SNN)にインスパイアされた新しい生物モデルを提案する。
GRAPESは、ニューラルネットワークの各ノードにおけるエラー信号の重量分布依存変調を実装している。
生物学的にインスパイアされたこのメカニズムは,ネットワークの収束率を体系的に改善し,ANNやSNNの分類精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2021-04-23T13:50:30Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。