論文の概要: Physics-informed Machine Learning for Calibrating Macroscopic Traffic
Flow Models
- arxiv url: http://arxiv.org/abs/2307.06267v1
- Date: Wed, 12 Jul 2023 16:11:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 12:34:19.543477
- Title: Physics-informed Machine Learning for Calibrating Macroscopic Traffic
Flow Models
- Title(参考訳): マクロトラヒックフローモデルのキャリブレーションのための物理インフォームド機械学習
- Authors: Yu Tang, Li Jin, Kaan Ozbay
- Abstract要約: 交通現象の理解と制御戦略の設計には,よく校正された交通流モデルが不可欠である。
そこで本研究では,最適化手法に匹敵する性能と,さらに優れた性能を実現する,物理インフォームドな,学習ベースのキャリブレーション手法を提案する。
- 参考スコア(独自算出の注目度): 7.422267768764612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Well-calibrated traffic flow models are fundamental to understanding traffic
phenomena and designing control strategies. Traditional calibration has been
developed base on optimization methods. In this paper, we propose a novel
physics-informed, learning-based calibration approach that achieves
performances comparable to and even better than those of optimization-based
methods. To this end, we combine the classical deep autoencoder, an
unsupervised machine learning model consisting of one encoder and one decoder,
with traffic flow models. Our approach informs the decoder of the physical
traffic flow models and thus induces the encoder to yield reasonable traffic
parameters given flow and speed measurements. We also introduce the denoising
autoencoder into our method so that it can handles not only with normal data
but also with corrupted data with missing values. We verified our approach with
a case study of I-210 E in California.
- Abstract(参考訳): 交通現象の理解と制御戦略の設計には,よく校正された交通流モデルが不可欠である。
従来のキャリブレーションは最適化法に基づいている。
本稿では,最適化に基づく手法に匹敵し,さらに優れた性能を実現する新しい物理モデルに基づくキャリブレーション手法を提案する。
この目的のために,1つのエンコーダと1つのデコーダからなる教師なし機械学習モデルであるclassic deep autoencoderとトラフィックフローモデルを組み合わせた。
提案手法は, 物理的トラフィックフローモデルのデコーダに通知し, 適切なトラフィックパラメータを導出するためにエンコーダを誘導する。
また,本手法にはデノナイズ自動エンコーダが組み込まれており,通常のデータだけでなく,値が不足したデータでも処理できる。
カリフォルニアにおけるI-210Eのケーススタディにより,我々のアプローチを検証した。
関連論文リスト
- Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - TrafficFlowGAN: Physics-informed Flow based Generative Adversarial
Network for Uncertainty Quantification [4.215251065887861]
動的システムの不確実性定量化(UQ)のための物理インフォームドフローベース生成逆ネットワーク(GAN)であるTrafficFlowGANを提案する。
このフローモデルは、データ可能性の最大化と、畳み込み判別器を騙すことができる合成データを生成するために訓練される。
我々の知る限りでは、UQ問題に対するフロー、GAN、PIDLの統合を最初に提案します。
論文 参考訳(メタデータ) (2022-06-19T03:35:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-07-14T17:27:23Z) - Simple and Effective VAE Training with Calibrated Decoders [123.08908889310258]
変分オートエンコーダ(VAE)は、複雑な分布をモデル化するための効果的で簡単な方法である。
復号分布の不確かさを学習する校正復号器の影響について検討する。
本稿では,一般的なガウス復号器の簡易かつ斬新な修正を提案し,その予測分散を解析的に計算する。
論文 参考訳(メタデータ) (2020-06-23T17:57:47Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
本研究では,有限体積シミュレータを用いて,高精度な深層学習に基づくプロキシモデルを効率的に教えることができることを示す。
従来のシミュレーションと比較して、提案したディープラーニングアプローチはより高速なフォワード計算を可能にする。
深層学習モデルの重要物理パラメータに対する感度を定量化することにより、インバージョン問題を大きな加速で解くことができることを示す。
論文 参考訳(メタデータ) (2020-06-09T17:14:08Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。