論文の概要: Deep Neural Networks for Semiparametric Frailty Models via H-likelihood
- arxiv url: http://arxiv.org/abs/2307.06581v1
- Date: Thu, 13 Jul 2023 06:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 15:38:29.651907
- Title: Deep Neural Networks for Semiparametric Frailty Models via H-likelihood
- Title(参考訳): H-likelihoodによる半パラメトリック欠陥モデルのためのディープニューラルネットワーク
- Authors: Hangbin Lee, IL DO HA, Youngjo Lee
- Abstract要約: 本稿では、時間-時間データの予測のための新しいディープニューラルネットワークベースの脆弱性(DNN-FM)を提案する。
新しいh-likelihoodモデルの合同推定器は、固定パラメータの最大値と、ランダムな欠陥の最良の非バイアス予測器を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For prediction of clustered time-to-event data, we propose a new deep neural
network based gamma frailty model (DNN-FM). An advantage of the proposed model
is that the joint maximization of the new h-likelihood provides maximum
likelihood estimators for fixed parameters and best unbiased predictors for
random frailties. Thus, the proposed DNN-FM is trained by using a negative
profiled h-likelihood as a loss function, constructed by profiling out the
non-parametric baseline hazard. Experimental studies show that the proposed
method enhances the prediction performance of the existing methods. A real data
analysis shows that the inclusion of subject-specific frailties helps to
improve prediction of the DNN based Cox model (DNN-Cox).
- Abstract(参考訳): クラスタ化された時間対イベントデータの予測のために,新しいディープニューラルネットワークに基づくガンマフラリティモデル(DNN-FM)を提案する。
提案モデルの利点は、新しいh-likelihoodの結合最大化により、固定パラメータの最大確率推定器とランダム欠陥の最良の非バイアス予測器が提供されることである。
したがって、非パラメトリックなベースラインハザードをプロファイリングして構築した損失関数として負のプロファイルh-likelihoodを用いてdnn-fmを訓練する。
実験により,提案手法が既存手法の予測性能を向上させることを示した。
実データ解析により,DNNベースのCoxモデル(DNN-Cox)の予測精度の向上に寄与することが明らかとなった。
関連論文リスト
- Deep Limit Model-free Prediction in Regression [0.0]
本稿では,DNN(Deep Neural Network)に基づくモデルフリーアプローチにより,一般的な回帰条件下での点予測と予測間隔を実現する。
提案手法は,特に最適点予測において,他のDNN法に比べて安定かつ正確である。
論文 参考訳(メタデータ) (2024-08-18T16:37:53Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features [1.2289361708127877]
本稿では,ポアソンディープニューラルネットワークにガンマランダム効果を導入するための新しい階層的確率学習フレームワークを提案する。
提案手法は,固定パラメータの最大極大推定器とランダム効果の最適非バイアス予測器を同時に生成する。
最先端のネットワークアーキテクチャは、提案されたh-likelihoodフレームワークに容易に実装できる。
論文 参考訳(メタデータ) (2023-10-18T01:54:48Z) - Prediction intervals for neural network models using weighted asymmetric
loss functions [0.3093890460224435]
本稿では,近似および予測された傾向に対する予測区間(PI)を簡便かつ効率的に生成する手法を提案する。
本手法は、重み付き非対称損失関数を利用して、PIの上下境界を推定する。
パラメトリド関数のPIを導出するためにどのように拡張できるかを示し、深層ニューラルネットワークのトレーニングにおいてその有効性について議論する。
論文 参考訳(メタデータ) (2022-10-09T18:58:24Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
本稿では,ベイズモデル (BM) とニューラルネットワーク (NN) を組み合わせて,予測を最小限のリスクで行う手法を提案する。
私たちのアプローチは、BMのデータ効率と解釈可能性とNNの速度を組み合わせます。
テストデータセットに無視できる損失がある標準手法よりも、リスク最小限の予測をはるかに高速に達成する。
論文 参考訳(メタデータ) (2021-03-29T15:08:25Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。