Quantum control of a cat-qubit with bit-flip times exceeding ten seconds
- URL: http://arxiv.org/abs/2307.06617v2
- Date: Fri, 31 May 2024 14:12:23 GMT
- Title: Quantum control of a cat-qubit with bit-flip times exceeding ten seconds
- Authors: Ulysse Réglade, Adrien Bocquet, Ronan Gautier, Joachim Cohen, Antoine Marquet, Emanuele Albertinale, Natalia Pankratova, Mattis Hallén, Felix Rautschke, Lev-Arcady Sellem, Pierre Rouchon, Alain Sarlette, Mazyar Mirrahimi, Philippe Campagne-Ibarcq, Raphaël Lescanne, Sébastien Jezouin, Zaki Leghtas,
- Abstract summary: We implement a cat-qubit with bit-flip times exceeding 10 seconds.
This is a four order of magnitude improvement over previous cat-qubit implementations.
This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum bits (qubits) are prone to several types of errors due to uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads. A hopeful path forward is to build qubits that are inherently protected against certain types of errors, so that the overhead required to correct remaining ones is significantly reduced. However, the foreseen benefit rests on a severe condition: quantum manipulations of the qubit must not break the protection that has been so carefully engineered. A recent qubit - the cat-qubit - is encoded in the manifold of metastable states of a quantum dynamical system, thereby acquiring continuous and autonomous protection against bit-flips. Here, in a superconducting circuit experiment, we implement a cat-qubit with bit-flip times exceeding 10 seconds. This is a four order of magnitude improvement over previous cat-qubit implementations. We prepare and image quantum superposition states, and measure phase-flip times above 490 nanoseconds. Most importantly, we control the phase of these quantum superpositions without breaking bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
Related papers
- Enhancing dissipative cat qubit protection by squeezing [22.42362976537419]
Cat-qubits are a promising architecture for quantum processors due to their built-in quantum error correction.
We show a 160-fold improvement in bit-flip time compared to a standard cat.
We also demonstrate a two-fold reduction in $Z$-gate infidelity.
arXiv Detail & Related papers (2025-02-11T19:01:05Z) - Hardware-efficient quantum error correction using concatenated bosonic qubits [41.6475446744259]
Quantum computers will need to incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy physical qubits.
Here, using a microfabricated superconducting quantum circuit, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits.
We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below threshold.
arXiv Detail & Related papers (2024-09-19T18:00:53Z) - Demonstration of quantum computation and error correction with a tesseract code [2.5843915259402834]
The tesseract subsystem color code protects four logical qubits in 16 physical qubits, to distance four.
We prepare high-fidelity encoded graph states on up to 12 logical qubits, beneficially combining for the first time fault-tolerant error correction and computation.
arXiv Detail & Related papers (2024-09-06T21:36:49Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Quantum computation with cat qubits [0.0]
We focus on the case of cat qubits stabilized by a nonlinear multi-photon driven dissipation process.
We argue that such a system can be seen as a self-correcting qubit where bit-flip errors are robustly and exponentially suppressed.
arXiv Detail & Related papers (2022-03-07T09:21:53Z) - Quantum error correction with silicon spin qubits [0.0]
Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information.
Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems.
Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits.
arXiv Detail & Related papers (2022-01-21T07:59:49Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.