Demonstration of quantum computation and error correction with a tesseract code
- URL: http://arxiv.org/abs/2409.04628v1
- Date: Fri, 6 Sep 2024 21:36:49 GMT
- Title: Demonstration of quantum computation and error correction with a tesseract code
- Authors: Ben W. Reichardt, David Aasen, Rui Chao, Alex Chernoguzov, Wim van Dam, John P. Gaebler, Dan Gresh, Dominic Lucchetti, Michael Mills, Steven A. Moses, Brian Neyenhuis, Adam Paetznick, Andres Paz, Peter E. Siegfried, Marcus P. da Silva, Krysta M. Svore, Zhenghan Wang, Matt Zanner,
- Abstract summary: The tesseract subsystem color code protects four logical qubits in 16 physical qubits, to distance four.
We prepare high-fidelity encoded graph states on up to 12 logical qubits, beneficially combining for the first time fault-tolerant error correction and computation.
- Score: 2.5843915259402834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A critical milestone for quantum computers is to demonstrate fault-tolerant computation that outperforms computation on physical qubits. The tesseract subsystem color code protects four logical qubits in 16 physical qubits, to distance four. Using the tesseract code on Quantinuum's trapped-ion quantum computers, we prepare high-fidelity encoded graph states on up to 12 logical qubits, beneficially combining for the first time fault-tolerant error correction and computation. We also protect encoded states through up to five rounds of error correction. Using performant quantum software and hardware together allows moderate-depth logical quantum circuits to have an order of magnitude less error than the equivalent unencoded circuits.
Related papers
- Logical computation demonstrated with a neutral atom quantum processor [26.395934835344015]
We show the entanglement of 24 logical qubits using the distance-two code, simultaneously detecting errors and correcting for lost qubits.
We also implement the Bernstein-Vazirani algorithm with up to 28 logical qubits encoded in the [[4,1,2]] code, showing better-than-physical error rates.
These results begin to clear a path for achieving scientific quantum advantage with a programmable neutral atom quantum processor.
arXiv Detail & Related papers (2024-11-18T18:39:23Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Entangling four logical qubits beyond break-even in a nonlocal code [0.0]
Quantum error correction protects logical quantum information against environmental decoherence.
We encode the GHZ state in four logical qubits with fidelity $ 99.5 pm 0.15 % le F le 99.7 pm 0.1% $ (after postselecting on over 98% of outcomes)
Our results are a first step towards realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.
arXiv Detail & Related papers (2024-06-04T18:00:00Z) - Logical quantum processor based on reconfigurable atom arrays [27.489364850707926]
We report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits.
Results herald the advent of early error-corrected quantum computation.
arXiv Detail & Related papers (2023-12-07T01:54:45Z) - Quantum Circuits for Stabilizer Error Correcting Codes: A Tutorial [11.637855523244838]
This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes.
We present encoding and decoding circuits for five-qubit code and Steane code, along with verification of these circuits using IBM Qiskit.
arXiv Detail & Related papers (2023-09-21T05:42:04Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.