論文の概要: Learning fixed points of recurrent neural networks by reparameterizing
the network model
- arxiv url: http://arxiv.org/abs/2307.06732v2
- Date: Thu, 27 Jul 2023 09:23:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 19:21:57.394085
- Title: Learning fixed points of recurrent neural networks by reparameterizing
the network model
- Title(参考訳): ネットワークモデルの再パラメータ化によるリカレントニューラルネットワークの固定点学習
- Authors: Vicky Zhu and Robert Rosenbaum
- Abstract要約: 計算神経科学において、リカレントニューラルネットワークの固定点は、静的またはゆっくりと変化する刺激に対する神経反応をモデル化するために一般的に用いられる。
自然なアプローチは、シナプス重みのユークリッド空間上の勾配勾配を利用することである。
この手法は, 損失面に生じる特異点により, 学習性能が低下する可能性があることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computational neuroscience, fixed points of recurrent neural networks are
commonly used to model neural responses to static or slowly changing stimuli.
These applications raise the question of how to train the weights in a
recurrent neural network to minimize a loss function evaluated on fixed points.
A natural approach is to use gradient descent on the Euclidean space of
synaptic weights. We show that this approach can lead to poor learning
performance due, in part, to singularities that arise in the loss surface. We
use a reparameterization of the recurrent network model to derive two
alternative learning rules that produces more robust learning dynamics. We show
that these learning rules can be interpreted as steepest descent and gradient
descent, respectively, under a non-Euclidean metric on the space of recurrent
weights. Our results question the common, implicit assumption that learning in
the brain should be expected to follow the negative Euclidean gradient of
synaptic weights.
- Abstract(参考訳): 計算神経科学において、リカレントニューラルネットワークの固定点は、静的またはゆっくりと変化する刺激に対する神経反応をモデル化するために一般的に用いられる。
これらの応用は、不動点で評価される損失関数を最小化するために、再帰的ニューラルネットワークにおける重み付けのトレーニング方法に関する疑問を提起する。
自然なアプローチは、シナプス重みのユークリッド空間上の勾配勾配を利用することである。
この手法は,損失面に生じる特異点に起因して,学習性能の低下につながる可能性があることを示す。
我々は、再帰的ネットワークモデルの再パラメータ化を用いて、より堅牢な学習ダイナミクスを生み出す2つの代替学習ルールを導出する。
これらの学習規則を, 回帰重みの空間上の非ユークリッド計量の下で, 最も急な降下と勾配降下と解釈できることを示す。
結果は,脳内の学習はシナプス重みの負のユークリッド勾配に従うことが期待される,暗黙の仮定に疑問を呈する。
関連論文リスト
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Smooth Exact Gradient Descent Learning in Spiking Neural Networks [0.0]
連続的にしか変化しないスパイキングダイナミクスに基づく厳密な勾配降下学習を実証する。
その結果, 離散的なスパイクにもかかわらず, 非破壊的学習がいかに可能かが示唆された。
論文 参考訳(メタデータ) (2023-09-25T20:51:00Z) - Decorrelating neurons using persistence [29.25969187808722]
2つの正規化項は、クリッドの最小スパンニングツリーの重みから計算される。
ニューロン間の相関関係を最小化することで、正規化条件よりも低い精度が得られることを示す。
正規化の可微分性の証明を含むので、最初の効果的なトポロジカルな永続性に基づく正規化用語を開発することができる。
論文 参考訳(メタデータ) (2023-08-09T11:09:14Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。