論文の概要: Learning Sparse Neural Networks with Identity Layers
- arxiv url: http://arxiv.org/abs/2307.07389v1
- Date: Fri, 14 Jul 2023 14:58:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 13:43:27.794635
- Title: Learning Sparse Neural Networks with Identity Layers
- Title(参考訳): 識別層を用いたスパースニューラルネットワークの学習
- Authors: Mingjian Ni, Guangyao Chen, Xiawu Zheng, Peixi Peng, Li Yuan, Yonghong
Tian
- Abstract要約: 本稿では,ネットワーク空間と層間特徴類似性の関係について検討する。
CKA-SRと呼ばれるスパースネットワークトレーニングのためのプラグアンドプレイCKAベースのスポーラリティ正規化を提案する。
CKA-SRは、複数のState-Of-The-Artスパース訓練法の性能を一貫して改善する。
- 参考スコア(独自算出の注目度): 33.11654855515443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sparsity of Deep Neural Networks is well investigated to maximize the
performance and reduce the size of overparameterized networks as possible.
Existing methods focus on pruning parameters in the training process by using
thresholds and metrics. Meanwhile, feature similarity between different layers
has not been discussed sufficiently before, which could be rigorously proved to
be highly correlated to the network sparsity in this paper. Inspired by
interlayer feature similarity in overparameterized models, we investigate the
intrinsic link between network sparsity and interlayer feature similarity.
Specifically, we prove that reducing interlayer feature similarity based on
Centered Kernel Alignment (CKA) improves the sparsity of the network by using
information bottleneck theory. Applying such theory, we propose a plug-and-play
CKA-based Sparsity Regularization for sparse network training, dubbed CKA-SR,
which utilizes CKA to reduce feature similarity between layers and increase
network sparsity. In other words, layers of our sparse network tend to have
their own identity compared to each other. Experimentally, we plug the proposed
CKA-SR into the training process of sparse network training methods and find
that CKA-SR consistently improves the performance of several State-Of-The-Art
sparse training methods, especially at extremely high sparsity. Code is
included in the supplementary materials.
- Abstract(参考訳): ニューラルネットワークの性能を最大化し、過パラメータ化ネットワークのサイズを極力小さくするために、Deep Neural Networksのスパーシリティをよく研究している。
既存の方法は、しきい値とメトリクスを使ってトレーニングプロセスのパラメータを刈り取ることに重点を置いている。
一方, 異なる層間の特徴的類似性については, これまで十分に議論されていないが, 本論文ではネットワークの疎結合性に高い相関性があることが厳密に証明されている。
過パラメータ化モデルにおける層間特徴類似性に着想を得て,ネットワーク空間と層間特徴類似性の関係について検討した。
具体的には,集中型カーネルアライメント(cka)に基づく層間特徴の類似性の低減により,情報ボトルネック理論を用いてネットワークのスパース性が向上することを示す。
このような理論を適用し、CKA-SRと呼ばれるスパースネットワークトレーニングのためのプラグアンドプレイCKAベースのスペーサ性正規化を提案し、CKAを用いて層間の特徴的類似性を低減し、ネットワークのスペーサ性を高める。
言い換えれば、スパースネットワークの層は互いに独自のアイデンティティを持つ傾向があるのです。
実験では,提案するcka-srをスパースネットワークトレーニング手法のトレーニングプロセスに挿入し,cka-srが,特に高いスパース性において,最先端スパーストレーニング手法の性能を一貫して向上させることを確認した。
コードは補足資料に含まれている。
関連論文リスト
- Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA [20.463933005601003]
機能カーネル上のCKA(Centered Kernel Alignment)は、ディープネットワークを比較するために提案されているが、ベイズディープラーニングの最適化目的には使われていない。
我々は,CKAカーネル上に超球面エネルギー(HE)のアプローチを適用し,この欠点に対処し,トレーニング安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2024-10-31T23:33:23Z) - SGLP: A Similarity Guided Fast Layer Partition Pruning for Compressing Large Deep Models [19.479746878680707]
レイヤプルーニングは、ネットワークサイズを削減し、計算効率を向上させるための強力なアプローチである。
大規模深層モデル圧縮のための類似性誘導高速層分割プルーニングを提案する。
本手法は精度と計算効率の両面で最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-10-14T04:01:08Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - Compare Where It Matters: Using Layer-Wise Regularization To Improve
Federated Learning on Heterogeneous Data [0.0]
フェデレートラーニング(Federated Learning)は、分散データ上でニューラルネットワークをトレーニングする方法として広く採用されている。
主な制限は、データが均一に分散されたときに発生するパフォーマンス劣化である。
本稿では,様々なディープラーニングタスクにおいて,従来の最先端手法よりも優れたパフォーマンスを実現するフレームワークであるFedCKAを紹介する。
論文 参考訳(メタデータ) (2021-12-01T10:46:13Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - HALO: Learning to Prune Neural Networks with Shrinkage [5.283963846188862]
ディープニューラルネットワークは、構造化されていないデータから豊富な特徴セットを抽出することにより、さまざまなタスクで最先端のパフォーマンスを実現する。
提案手法は,(1)ネットワークプルーニング,(2)スパシティ誘導ペナルティによるトレーニング,(3)ネットワークの重みと連動してバイナリマスクをトレーニングすることである。
トレーニング可能なパラメータを用いて、与えられたネットワークの重みを適応的に分散化することを学ぶ階層適応ラッソ(Hierarchical Adaptive Lasso)という新しいペナルティを提案する。
論文 参考訳(メタデータ) (2020-08-24T04:08:48Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。