Uncovering Local Integrability in Quantum Many-Body Dynamics
- URL: http://arxiv.org/abs/2307.07552v1
- Date: Fri, 14 Jul 2023 18:00:05 GMT
- Title: Uncovering Local Integrability in Quantum Many-Body Dynamics
- Authors: Oles Shtanko, Derek S. Wang, Haimeng Zhang, Nikhil Harle, Alireza
Seif, Ramis Movassagh, Zlatko Minev
- Abstract summary: Using up to 124 qubits of a fully programmable quantum computer, we uncover local conservation laws and integrability in one- and two-dimensional periodically-driven spin lattices.
Our results demonstrate a versatile strategy for extracting hidden dynamical structure from noisy experiments on large-scale quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interacting many-body quantum systems and their dynamics, while fundamental
to modern science and technology, are formidable to simulate and understand.
However, by discovering their symmetries, conservation laws, and integrability
one can unravel their intricacies. Here, using up to 124 qubits of a fully
programmable quantum computer, we uncover local conservation laws and
integrability in one- and two-dimensional periodically-driven spin lattices in
a regime previously inaccessible to such detailed analysis. We focus on the
paradigmatic example of disorder-induced ergodicity breaking, where we first
benchmark the system crossover into a localized regime through anomalies in the
one-particle-density-matrix spectrum and other hallmark signatures. We then
demonstrate that this regime stems from hidden local integrals of motion by
faithfully reconstructing their quantum operators, thus providing a detailed
portrait of the system's integrable dynamics. Our results demonstrate a
versatile strategy for extracting hidden dynamical structure from noisy
experiments on large-scale quantum computers.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Simulating the dynamics of large many-body quantum systems with Schrödinger-Feynman techniques [0.0]
This paper highlights hybrid Schr"odinger-Feynman techniques as an innovative approach to efficiently simulate certain aspects of many-body quantum dynamics on classical computers.
With the here proposed Schr"odinger-Feynman method, we are able to simulate the pure-state survival probability in systems significantly larger than accessible by standard sparse-matrix techniques.
arXiv Detail & Related papers (2024-03-28T22:20:23Z) - Exact Hidden Markovian Dynamics in Quantum Circuits [1.2845309023495566]
We show that the influence of the time-evolved global system on a finite subsystem can be analytically described by sequential, time-local quantum channels.
The realization of exact hidden Markovian property is facilitated by a solvable condition on the underlying two-site gates in the quantum circuit.
arXiv Detail & Related papers (2024-03-21T19:42:21Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Scrambling and operator entanglement in local non-Hermitian quantum
systems [0.0]
We study information scrambling and quantum chaos in non-Hermitian variants of paradigmatic local quantum spin-chain models.
We extend operator entanglement based diagnostics from previous works on closed and open quantum systems to the new arena of monitored quantum dynamics.
arXiv Detail & Related papers (2023-05-20T01:35:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.