Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2307.07693v3
- Date: Thu, 21 Nov 2024 22:12:22 GMT
- Title: Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging
- Authors: Meng Ye, Dong Yang, Mikael Kanski, Leon Axel, Dimitris Metaxas,
- Abstract summary: We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart.
We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions.
Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically.
- Score: 8.12099697240624
- License:
- Abstract: We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.
Related papers
- Generative 3D Cardiac Shape Modelling for In-Silico Trials [0.0]
We propose a deep learning method to model and generate synthetic aortic shapes.
The network is trained on a dataset of aortic root meshes reconstructed from CT images.
By sampling from the learned embedding vectors, we can generate novel shapes that resemble real patient anatomies.
arXiv Detail & Related papers (2024-09-24T12:59:18Z) - Deep Conditional Shape Models for 3D cardiac image segmentation [1.4042211166197214]
We introduce a novel segmentation algorithm that uses Deep Shape models (DCSMs) Conditional as a core component.
To fit the generated shape to the image, the shape model is conditioned on anatomic landmarks that can be automatically detected or provided by the user.
We demonstrate that the automatic DCSM outperforms the baseline for non-contrasted CT without the local refinement, and with the refinement for contrasted CT and 3DE, especially with significant improvement in the Hausdorff distance.
arXiv Detail & Related papers (2023-10-16T18:38:26Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
We present a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain.
Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets.
We may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations.
arXiv Detail & Related papers (2023-02-01T02:47:53Z) - Learning Whole Heart Mesh Generation From Patient Images For
Computational Simulations [2.2496714271898166]
We present a fast and automated deep-learning method to construct simulation-suitable models of the heart from medical images.
The approach constructs meshes from 3D patient images by learning to deform a small set of deformation handles on a whole heart template.
arXiv Detail & Related papers (2022-03-20T10:19:05Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data.
Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions.
arXiv Detail & Related papers (2021-02-16T00:39:43Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z) - A new geodesic-based feature for characterization of 3D shapes:
application to soft tissue organ temporal deformations [0.0]
We show a direct application on a study of organ temporal deformations.
We characterize the behavior of a bladder during a forced respiratory motion with a reduced number of 3D surface points.
We demonstrate the robustness of our feature on both synthetic 3D shapes and realistic dynamic MRI data.
arXiv Detail & Related papers (2020-03-18T16:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.