A new geodesic-based feature for characterization of 3D shapes:
application to soft tissue organ temporal deformations
- URL: http://arxiv.org/abs/2003.08332v1
- Date: Wed, 18 Mar 2020 16:56:41 GMT
- Title: A new geodesic-based feature for characterization of 3D shapes:
application to soft tissue organ temporal deformations
- Authors: Karim Makki, Amine Bohi, Augustin C. Ogier, Marc-Emmanuel Bellemare
- Abstract summary: We show a direct application on a study of organ temporal deformations.
We characterize the behavior of a bladder during a forced respiratory motion with a reduced number of 3D surface points.
We demonstrate the robustness of our feature on both synthetic 3D shapes and realistic dynamic MRI data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a method for characterizing 3D shapes from point
clouds and we show a direct application on a study of organ temporal
deformations. As an example, we characterize the behavior of a bladder during a
forced respiratory motion with a reduced number of 3D surface points: first, a
set of equidistant points representing the vertices of quadrilateral mesh for
the surface in the first time frame are tracked throughout a long dynamic MRI
sequence using a Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework. Second, a novel geometric feature which is invariant to scaling and
rotation is proposed for characterizing the temporal organ deformations by
employing an Eulerian Partial Differential Equations (PDEs) methodology. We
demonstrate the robustness of our feature on both synthetic 3D shapes and
realistic dynamic MRI data portraying the bladder deformation during forced
respiratory motions. Promising results are obtained, showing that the proposed
feature may be useful for several computer vision applications such as medical
imaging, aerodynamics and robotics.
Related papers
- PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis [25.594334301684903]
We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes.
Key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry.
We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art.
arXiv Detail & Related papers (2024-02-26T20:00:57Z) - TriHuman : A Real-time and Controllable Tri-plane Representation for
Detailed Human Geometry and Appearance Synthesis [76.73338151115253]
TriHuman is a novel human-tailored, deformable, and efficient tri-plane representation.
We non-rigidly warp global ray samples into our undeformed tri-plane texture space.
We show how such a tri-plane feature representation can be conditioned on the skeletal motion to account for dynamic appearance and geometry changes.
arXiv Detail & Related papers (2023-12-08T16:40:38Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging [8.12099697240624]
We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart.
We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions.
Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically.
arXiv Detail & Related papers (2023-07-15T03:11:16Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) methods estimate 3D surface deformations from a single monocular RGB camera.
This paper proposes a new SfT approach explaining 2D observations through physical simulations.
arXiv Detail & Related papers (2022-03-22T17:59:57Z) - Characterization of surface motion patterns in highly deformable soft
tissue organs from dynamic MRI: An application to assess 4D bladder motion [0.0]
The objective of this study is to go towards 3D dense velocity measurements to fully cover the entire surface.
We present a pipeline for characterization of bladder surface dynamics during deep respiratory movements.
arXiv Detail & Related papers (2020-10-05T08:38:08Z) - Dynamic Reconstruction of Deformable Soft-tissue with Stereo Scope in
Minimal Invasive Surgery [24.411005883017832]
In minimal invasive surgery, it is important to rebuild and visualize the latest deformed shape of soft-tissue surfaces.
This paper proposes an innovative Simultaneous localization and Mapping (SLAM) algorithm for deformable dense reconstruction of surfaces.
In-vivo experiments with publicly available datasets demonstrate that the 3D models can be incrementally built for different soft-tissues.
arXiv Detail & Related papers (2020-03-22T16:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.