論文の概要: NeurASP: Embracing Neural Networks into Answer Set Programming
- arxiv url: http://arxiv.org/abs/2307.07700v1
- Date: Sat, 15 Jul 2023 04:03:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 18:16:47.939900
- Title: NeurASP: Embracing Neural Networks into Answer Set Programming
- Title(参考訳): NeurASP: ニューラルネットワークを解答セットプログラミングに適用する
- Authors: Zhun Yang, Adam Ishay, Joohyung Lee
- Abstract要約: NeurASPは、ニューラルネットワークを採用することで、応答セットプログラムの単純な拡張である。
ニューラルネットワーク出力を応答集合プログラムの原子事実上の確率分布として扱うことにより、NeurASPはサブシンボリックおよびシンボリック計算を統合するためのシンプルで効果的な方法を提供する。
- 参考スコア(独自算出の注目度): 5.532477732693001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present NeurASP, a simple extension of answer set programs by embracing
neural networks. By treating the neural network output as the probability
distribution over atomic facts in answer set programs, NeurASP provides a
simple and effective way to integrate sub-symbolic and symbolic computation. We
demonstrate how NeurASP can make use of a pre-trained neural network in
symbolic computation and how it can improve the neural network's perception
result by applying symbolic reasoning in answer set programming. Also, NeurASP
can be used to train a neural network better by training with ASP rules so that
a neural network not only learns from implicit correlations from the data but
also from the explicit complex semantic constraints expressed by the rules.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いた解答集合プログラムの簡易拡張であるneuraspを提案する。
ニューラルネットワーク出力を応答集合プログラムの原子事実上の確率分布として扱うことにより、NeurASPはサブシンボリックおよびシンボリック計算を統合するためのシンプルで効果的な方法を提供する。
我々は,NeurASPが事前学習したニューラルネットワークを記号計算に活用する方法と,応答集合プログラミングにシンボリック推論を適用してニューラルネットワークの知覚結果を改善する方法を示す。
また、NeurASPは、ASPルールを使用してトレーニングすることで、ニューラルネットワークをデータから暗黙の相関から学習するだけでなく、ルールによって表現される明示的な複雑なセマンティック制約から学習することが可能になる。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Closed-Form Interpretation of Neural Network Classifiers with Symbolic Gradients [0.7832189413179361]
人工ニューラルネットワークにおいて、任意の単一ニューロンのクローズドフォーム解釈を見つけるための統一的なフレームワークを紹介します。
ニューラルネットワーク分類器を解釈して、決定境界に符号化された概念のクローズドフォーム表現を明らかにする。
論文 参考訳(メタデータ) (2024-01-10T07:47:42Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Taming Binarized Neural Networks and Mixed-Integer Programs [2.7624021966289596]
バイナライズされたニューラルネットワークはテーム表現を許容することを示す。
これにより、Bolte et al. のフレームワークを暗黙の微分に使用できる。
このアプローチは、より広範な混合整数プログラムのクラスにも使用することができる。
論文 参考訳(メタデータ) (2023-10-05T21:04:16Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Reconstructing Training Data from Trained Neural Networks [42.60217236418818]
いくつかのケースでは、トレーニングデータのかなりの部分が、実際にトレーニングされたニューラルネットワーク分類器のパラメータから再構成可能であることを示す。
本稿では,勾配に基づくニューラルネットワークの学習における暗黙バイアスに関する最近の理論的結果から,新たな再構成手法を提案する。
論文 参考訳(メタデータ) (2022-06-15T18:35:16Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
深い疎結合ニューラルネットワークを用いて、関数クラスの複雑性を$L(mathbb Rd)$で測定する。
また、ニューラルネットワークを誘導する関数の可算コレクションである表現システムについても紹介する。
次に、レート歪曲理論とウェッジレット構成を用いて、$beta$マンガ的関数と呼ばれるクラスの複雑性を分析する。
論文 参考訳(メタデータ) (2021-08-14T05:14:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Extending Answer Set Programs with Neural Networks [2.512827436728378]
ニューラルネットワークを導入することで、応答セットプログラムをシンプルに拡張するNeurASPを提案する。
我々は、NeurASPがトレーニング済みニューラルネットワークの知覚精度を向上できるだけでなく、論理ルールによる制約を与えることで、ニューラルネットワークをより良くトレーニングできることを示した。
論文 参考訳(メタデータ) (2020-09-22T00:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。