A new quantum machine learning algorithm: split hidden quantum Markov model inspired by quantum conditional master equation
- URL: http://arxiv.org/abs/2307.08640v7
- Date: Thu, 31 Oct 2024 01:47:53 GMT
- Title: A new quantum machine learning algorithm: split hidden quantum Markov model inspired by quantum conditional master equation
- Authors: Xiao-Yu Li, Qin-Sheng Zhu, Yong Hu, Hao Wu, Guo-Wu Yang, Lian-Hui Yu, Geng Chen,
- Abstract summary: We introduce the split HQMM (SHQMM) for implementing the hidden quantum Markov process.
Experimental results suggest our model outperforms previous models in terms of scope of applications and robustness.
- Score: 14.262911696419934
- License:
- Abstract: The Hidden Quantum Markov Model (HQMM) has significant potential for analyzing time-series data and studying stochastic processes in the quantum domain as an upgrading option with potential advantages over classical Markov models. In this paper, we introduced the split HQMM (SHQMM) for implementing the hidden quantum Markov process, utilizing the conditional master equation with a fine balance condition to demonstrate the interconnections among the internal states of the quantum system. The experimental results suggest that our model outperforms previous models in terms of scope of applications and robustness. Additionally, we establish a new learning algorithm to solve parameters in HQMM by relating the quantum conditional master equation to the HQMM. Finally, our study provides clear evidence that the quantum transport system can be considered a physical representation of HQMM. The SHQMM with accompanying algorithms present a novel method to analyze quantum systems and time series grounded in physical implementation.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms.
QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain.
Our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Scalable Quantum Ground State Preparation of the Heisenberg Model: A
Variational Quantum Eigensolver Approach [0.0]
Variational Quantumsolver (VQE) algorithm is a system composed of a quantum circuit and a classical Eigenational Quantumsolver.
We present an ansatz capable of preparing the ground states for all possible values of the coupling, including the critical states for the anisotropic XXZ model.
arXiv Detail & Related papers (2023-08-23T09:26:34Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
arXiv Detail & Related papers (2023-07-19T08:07:53Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Minimal informationally complete measurements for probability
representation of quantum dynamics [0.0]
We suggest an approach for describing dynamics of finite-dimensional quantum systems in terms of pseudostochastic maps acting on probability distributions.
A key advantage of the suggested approach is that minimal informationally complete positive operator-valued measures (MIC-POVMs) are easier to construct in comparison with their symmetric versions (SIC-POVMs)
We apply the MIC-POVM-based probability representation to the digital quantum computing model.
arXiv Detail & Related papers (2020-06-22T13:19:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.