Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver
- URL: http://arxiv.org/abs/2307.10324v3
- Date: Fri, 26 Jul 2024 21:09:48 GMT
- Title: Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver
- Authors: Zheng Qin, Xiufan Li, Yang Zhou, Shikun Zhang, Rui Li, Chunxiao Du, Zhisong Xiao,
- Abstract summary: Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
- Score: 17.975555487972166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages; however, most of these algorithms are only expressed in the conventional quantum circuit scheme. The roadblock to developing quantum algorithms with the measurement-based quantum computation (MBQC) scheme is resource cost. Recently, we discovered that the realization of multi-qubit rotation operations requires a constant number of single-qubit measurements with the MBQC scheme, providing a potential advantage in terms of resource cost. The structure of the Hamiltonian variational ansatz (HVA) aligns well with this characteristic. Thus, we propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA). We then demonstrate the effectiveness, efficiency, and advantages of the two-dimensional Heisenberg model and the Fermi-Hubbard chain. Numerical experiments show that MBHVA is expected to reduce resource overhead compared to quantum circuits, especially in the presence of large multi-qubit rotation operations. Furthermore, when compared to Measurement-based Hardware Efficient Ansatz (MBHEA), MBHVA also demonstrates superior performance. We conclude that the MBQC scheme is potentially feasible for achieving near-term quantum advantages in terms of both resource efficiency and error mitigation, particularly for photonic platforms.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Truncation technique for variational quantum eigensolver for Molecular
Hamiltonians [0.0]
variational quantum eigensolver (VQE) is one of the most promising quantum algorithms for noisy quantum devices.
We propose a physically intuitive truncation technique that starts the optimization procedure with a truncated Hamiltonian.
This strategy allows us to reduce the required number of evaluations for the expectation value of Hamiltonian on a quantum computer.
arXiv Detail & Related papers (2024-02-02T18:45:12Z) - Quantum advantage in temporally flat measurement-based quantum computation [0.0]
We study the efficiency of measurement-based quantum computation with a completely flat temporal ordering of measurements.
We identify a family of Boolean functions for which deterministic evaluation using non-adaptive MBQC is possible.
arXiv Detail & Related papers (2022-12-07T14:34:56Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.