Multimodal LLMs for health grounded in individual-specific data
- URL: http://arxiv.org/abs/2307.09018v2
- Date: Thu, 20 Jul 2023 06:35:34 GMT
- Title: Multimodal LLMs for health grounded in individual-specific data
- Authors: Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish
Eswaran, Shravya Shetty, Greg Corrado, Andrew Carroll, Cory Y. McLean,
Nicholas A. Furlotte
- Abstract summary: Foundation large language models (LLMs) have shown an impressive ability to solve tasks across a wide range of fields including health.
We take a step towards creating multimodal LLMs for health that are grounded in individual-specific data.
We show that HeLM can effectively use demographic and clinical features in addition to high-dimensional time-series data to estimate disease risk.
- Score: 1.8473477867376036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation large language models (LLMs) have shown an impressive ability to
solve tasks across a wide range of fields including health. To effectively
solve personalized health tasks, LLMs need the ability to ingest a diversity of
data modalities that are relevant to an individual's health status. In this
paper, we take a step towards creating multimodal LLMs for health that are
grounded in individual-specific data by developing a framework (HeLM: Health
Large Language Model for Multimodal Understanding) that enables LLMs to use
high-dimensional clinical modalities to estimate underlying disease risk. HeLM
encodes complex data modalities by learning an encoder that maps them into the
LLM's token embedding space and for simple modalities like tabular data by
serializing the data into text. Using data from the UK Biobank, we show that
HeLM can effectively use demographic and clinical features in addition to
high-dimensional time-series data to estimate disease risk. For example, HeLM
achieves an AUROC of 0.75 for asthma prediction when combining tabular and
spirogram data modalities compared with 0.49 when only using tabular data.
Overall, we find that HeLM outperforms or performs at parity with classical
machine learning approaches across a selection of eight binary traits.
Furthermore, we investigate the downstream uses of this model such as its
generalizability to out-of-distribution traits and its ability to power
conversations around individual health and wellness.
Related papers
- LLM-Forest for Health Tabular Data Imputation [37.14344322899091]
Large language models (LLMs), trained on vast corpora, have shown strong potential in data generation.
We propose a novel framework, LLM-Forest, which introduces a "forest" of few-shot learning LLM "trees" with confidence-based weighted voting.
This framework is established on a new concept of bipartite information graphs to identify high-quality relevant neighboring entries.
arXiv Detail & Related papers (2024-10-28T20:42:46Z) - RespLLM: Unifying Audio and Text with Multimodal LLMs for Generalized Respiratory Health Prediction [20.974460332254544]
RespLLM is a novel framework that unifies text and audio representations for respiratory health prediction.
Our work lays the foundation for multimodal models that can perceive, listen, and understand heterogeneous data.
arXiv Detail & Related papers (2024-10-07T17:06:11Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
We introduce MedTsLLM, a general multimodal large language model (LLM) framework that integrates time series data and rich contextual information in the form of text to analyze physiological signals.
We perform three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series.
Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains.
arXiv Detail & Related papers (2024-08-14T18:57:05Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.