RespLLM: Unifying Audio and Text with Multimodal LLMs for Generalized Respiratory Health Prediction
- URL: http://arxiv.org/abs/2410.05361v1
- Date: Mon, 7 Oct 2024 17:06:11 GMT
- Title: RespLLM: Unifying Audio and Text with Multimodal LLMs for Generalized Respiratory Health Prediction
- Authors: Yuwei Zhang, Tong Xia, Aaqib Saeed, Cecilia Mascolo,
- Abstract summary: RespLLM is a novel framework that unifies text and audio representations for respiratory health prediction.
Our work lays the foundation for multimodal models that can perceive, listen, and understand heterogeneous data.
- Score: 20.974460332254544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The high incidence and mortality rates associated with respiratory diseases underscores the importance of early screening. Machine learning models can automate clinical consultations and auscultation, offering vital support in this area. However, the data involved, spanning demographics, medical history, symptoms, and respiratory audio, are heterogeneous and complex. Existing approaches are insufficient and lack generalizability, as they typically rely on limited training data, basic fusion techniques, and task-specific models. In this paper, we propose RespLLM, a novel multimodal large language model (LLM) framework that unifies text and audio representations for respiratory health prediction. RespLLM leverages the extensive prior knowledge of pretrained LLMs and enables effective audio-text fusion through cross-modal attentions. Instruction tuning is employed to integrate diverse data from multiple sources, ensuring generalizability and versatility of the model. Experiments on five real-world datasets demonstrate that RespLLM outperforms leading baselines by an average of 4.6% on trained tasks, 7.9% on unseen datasets, and facilitates zero-shot predictions for new tasks. Our work lays the foundation for multimodal models that can perceive, listen to, and understand heterogeneous data, paving the way for scalable respiratory health diagnosis.
Related papers
- SpiroActive: Active Learning for Efficient Data Acquisition for Spirometry [1.6462611320898275]
Respiratory illnesses are the seventh leading cause of poor health worldwide and the third leading cause of death worldwide, causing 3.23 million deaths in 2019.
We propose using active learning, a sub-field of machine learning, to mitigate the challenges associated with data collection and labeling.
arXiv Detail & Related papers (2024-10-30T12:07:30Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
We introduce MedTsLLM, a general multimodal large language model (LLM) framework that integrates time series data and rich contextual information in the form of text to analyze physiological signals.
We perform three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series.
Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains.
arXiv Detail & Related papers (2024-08-14T18:57:05Z) - Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking [27.708473070563013]
Respiratory audio has predictive power for a wide range of healthcare applications, yet is currently under-explored.
We introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system.
arXiv Detail & Related papers (2024-06-23T16:04:26Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - Multimodal LLMs for health grounded in individual-specific data [1.8473477867376036]
Foundation large language models (LLMs) have shown an impressive ability to solve tasks across a wide range of fields including health.
We take a step towards creating multimodal LLMs for health that are grounded in individual-specific data.
We show that HeLM can effectively use demographic and clinical features in addition to high-dimensional time-series data to estimate disease risk.
arXiv Detail & Related papers (2023-07-18T07:12:46Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.