LLM-Forest for Health Tabular Data Imputation
- URL: http://arxiv.org/abs/2410.21520v1
- Date: Mon, 28 Oct 2024 20:42:46 GMT
- Title: LLM-Forest for Health Tabular Data Imputation
- Authors: Xinrui He, Yikun Ban, Jiaru Zou, Tianxin Wei, Curtiss B. Cook, Jingrui He,
- Abstract summary: Large language models (LLMs), trained on vast corpora, have shown strong potential in data generation.
We propose a novel framework, LLM-Forest, which introduces a "forest" of few-shot learning LLM "trees" with confidence-based weighted voting.
This framework is established on a new concept of bipartite information graphs to identify high-quality relevant neighboring entries.
- Score: 37.14344322899091
- License:
- Abstract: Missing data imputation is a critical challenge in tabular datasets, especially in healthcare, where data completeness is vital for accurate analysis. Large language models (LLMs), trained on vast corpora, have shown strong potential in data generation, making them a promising tool for tabular data imputation. However, challenges persist in designing effective prompts for a finetuning-free process and in mitigating the risk of LLM hallucinations. To address these issues, we propose a novel framework, LLM-Forest, which introduces a "forest" of few-shot learning LLM "trees" with confidence-based weighted voting. This framework is established on a new concept of bipartite information graphs to identify high-quality relevant neighboring entries with both feature and value granularity. Extensive experiments on four real-world healthcare datasets demonstrate the effectiveness and efficiency of LLM-Forest.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - Developing Healthcare Language Model Embedding Spaces [0.20971479389679337]
Pre-trained Large Language Models (LLMs) often struggle on out-of-domain datasets like healthcare focused text.
Three methods are assessed: traditional masked language modeling, Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) and a novel pre-training objective utilizing metadata categories from the healthcare settings.
Contrastively trained models outperform other approaches on the classification tasks, delivering strong performance from limited labeled data and with fewer model parameter updates required.
arXiv Detail & Related papers (2024-03-28T19:31:32Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Multimodal LLMs for health grounded in individual-specific data [1.8473477867376036]
Foundation large language models (LLMs) have shown an impressive ability to solve tasks across a wide range of fields including health.
We take a step towards creating multimodal LLMs for health that are grounded in individual-specific data.
We show that HeLM can effectively use demographic and clinical features in addition to high-dimensional time-series data to estimate disease risk.
arXiv Detail & Related papers (2023-07-18T07:12:46Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.