LLMs as Workers in Human-Computational Algorithms? Replicating
Crowdsourcing Pipelines with LLMs
- URL: http://arxiv.org/abs/2307.10168v2
- Date: Thu, 20 Jul 2023 02:29:25 GMT
- Title: LLMs as Workers in Human-Computational Algorithms? Replicating
Crowdsourcing Pipelines with LLMs
- Authors: Tongshuang Wu, Haiyi Zhu, Maya Albayrak, Alexis Axon, Amanda Bertsch,
Wenxing Deng, Ziqi Ding, Bill Guo, Sireesh Gururaja, Tzu-Sheng Kuo, Jenny T.
Liang, Ryan Liu, Ihita Mandal, Jeremiah Milbauer, Xiaolin Ni, Namrata
Padmanabhan, Subhashini Ramkumar, Alexis Sudjianto, Jordan Taylor, Ying-Jui
Tseng, Patricia Vaidos, Zhijin Wu, Wei Wu, Chenyang Yang
- Abstract summary: LLMs have shown promise in replicating human-like behavior in crowdsourcing tasks that were previously thought to be exclusive to human abilities.
We explore whether LLMs can replicate more complex crowdsourcing pipelines.
- Score: 25.4184470735779
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLMs have shown promise in replicating human-like behavior in crowdsourcing
tasks that were previously thought to be exclusive to human abilities. However,
current efforts focus mainly on simple atomic tasks. We explore whether LLMs
can replicate more complex crowdsourcing pipelines. We find that modern LLMs
can simulate some of crowdworkers' abilities in these "human computation
algorithms," but the level of success is variable and influenced by requesters'
understanding of LLM capabilities, the specific skills required for sub-tasks,
and the optimal interaction modality for performing these sub-tasks. We reflect
on human and LLMs' different sensitivities to instructions, stress the
importance of enabling human-facing safeguards for LLMs, and discuss the
potential of training humans and LLMs with complementary skill sets. Crucially,
we show that replicating crowdsourcing pipelines offers a valuable platform to
investigate (1) the relative strengths of LLMs on different tasks (by
cross-comparing their performances on sub-tasks) and (2) LLMs' potential in
complex tasks, where they can complete part of the tasks while leaving others
to humans.
Related papers
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
Large Language Models (LLMs) are transforming programming practices, offering significant capabilities for code generation activities.
This paper focuses on their use in programming tasks, drawing insights from user studies that assess the impact of LLMs on programming tasks.
arXiv Detail & Related papers (2024-10-01T19:34:46Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - A Survey of Useful LLM Evaluation [20.048914787813263]
Two-stage framework: from core ability'' to agent''
In the "core ability" stage, we discussed the reasoning ability, societal impact, and domain knowledge of LLMs.
In the agent'' stage, we demonstrated embodied action, planning, and tool learning of LLMs agent applications.
arXiv Detail & Related papers (2024-06-03T02:20:03Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - LLM Augmented Hierarchical Agents [4.574041097539858]
Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning)
In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks.
This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks.
arXiv Detail & Related papers (2023-11-09T18:54:28Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.