論文の概要: GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond
- arxiv url: http://arxiv.org/abs/2307.10420v2
- Date: Mon, 07 Oct 2024 21:05:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:28:07.580005
- Title: GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond
- Title(参考訳): GOOSEアルゴリズム - 実世界のエンジニアリング課題を克服する強力な最適化ツール
- Authors: Rebwar Khalid Hamad, Tarik A. Rashid,
- Abstract要約: GOOSEアルゴリズムは19のよく知られたテスト関数でベンチマークされる。
提案アルゴリズムは, 最新のベンチマーク関数10を用いて検証する。
得られた結果は,提案アルゴリズムの優れた性能を示すものである。
- 参考スコア(独自算出の注目度): 4.939986309170004
- License:
- Abstract: This study proposes the GOOSE algorithm as a novel metaheuristic algorithm based on the goose's behavior during rest and foraging. The goose stands on one leg and keeps his balance to guard and protect other individuals in the flock. The GOOSE algorithm is benchmarked on 19 well-known benchmark test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), and fitness dependent optimizer (FDO). In addition, the proposed algorithm is tested on 10 modern benchmark functions, and the gained results are compared with three recent algorithms, such as the dragonfly algorithm, whale optimization algorithm (WOA), and salp swarm algorithm (SSA). Moreover, the GOOSE algorithm is tested on 5 classical benchmark functions, and the obtained results are evaluated with six algorithms, such as fitness dependent optimizer (FDO), FOX optimizer, butterfly optimization algorithm (BOA), whale optimization algorithm, dragonfly algorithm, and chimp optimization algorithm (ChOA). The achieved findings attest to the proposed algorithm's superior performance compared to the other algorithms that were utilized in the current study. The technique is then used to optimize Welded beam design and Economic Load Dispatch Problem, three renowned real-world engineering challenges, and the Pathological IgG Fraction in the Nervous System. The outcomes of the engineering case studies illustrate how well the suggested approach can optimize issues that arise in the real-world.
- Abstract(参考訳): 本研究では,ガチョウの休養行動と採餌行動に基づく新しいメタヒューリスティックアルゴリズムとして,GOOSEアルゴリズムを提案する。
ガチョウは片足で立ち、群れの中で他の個人を守り、保護するためにバランスを保ちます。
GOOSEアルゴリズムは、よく知られた19のベンチマークテスト関数をベンチマークし、遺伝的アルゴリズム(GA)、粒子群最適化(PSO)、トンボアルゴリズム(DA)、フィットネス依存最適化(FDO)との比較によって検証する。
さらに, 提案アルゴリズムは, 最新のベンチマーク関数10種に対して試験を行い, 得られた結果は, トンボアルゴリズム, クジラ最適化アルゴリズム (WOA) , サルプ群アルゴリズム (SSA) の3つの最近のアルゴリズムと比較した。
さらに、GOOSEアルゴリズムは5つの古典的ベンチマーク関数で検証され、適合度依存最適化アルゴリズム(FDO)、FOX最適化アルゴリズム、蝶最適化アルゴリズム(BOA)、クジラ最適化アルゴリズム、トンボアルゴリズム、チンパンジー最適化アルゴリズム(ChOA)の6つのアルゴリズムで評価される。
得られた結果から,提案アルゴリズムの性能は,本研究で用いた他のアルゴリズムと比較して高い結果が得られた。
この技術は、溶接ビーム設計とエコノミック・ロード・ディスパッチ問題、3つの有名な現実世界の工学的課題、そして神経系における病理IgGフラクションの最適化に使用される。
エンジニアリングケーススタディの結果は、提案されたアプローチが現実世界で発生する問題をいかに最適化できるかを示している。
関連論文リスト
- BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems [0.5755004576310334]
本稿では,Best-MeanRandom (BMR) とBest-Worst-Random (BWR) の2つの単純な最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-07-15T18:11:47Z) - The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems [3.2432648012273346]
The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problem。
FFOの性能を評価するため、FFOは13の最適化アルゴリズムに対して広範な実験を行った。
その結果、FFOは比較性能を達成し、いくつかのシナリオでは、得られた適合性、正確性に要する時間、時間単位でカバーされる研究空間の点で、一般的に採用されている最適化アルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-01T18:38:59Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Duck swarm algorithm: theory, numerical optimization, and applications [6.244015536594532]
本研究では,Duck Swarm Algorithm (DSA) という,群知能に基づく最適化アルゴリズムを提案する。
2つのルールは、提案されたDSAの探索と利用段階に対応するアヒルの餌の発見と採餌からモデル化される。
その結果, DSAは収束速度と探索・探索のバランスの観点から, 高性能な最適化手法であることがわかった。
論文 参考訳(メタデータ) (2021-12-27T04:53:36Z) - ANA: Ant Nesting Algorithm for Optimizing Real-World Problems [21.95618652596178]
アリネストアルゴリズム(ANA)と呼ばれる新しいインテリジェントスワムの提案
このアルゴリズムはLeptothorax antsにインスパイアされ、新しい巣を作りながら穀物を堆積する位置を探すアリの行動を模倣している。
ANAは、変更率を追加することで、検索エージェントの位置を更新する連続アルゴリズムであると考えられている。
論文 参考訳(メタデータ) (2021-12-04T08:55:06Z) - An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm
for First-order and Zeroth-order Optimization [111.24899593052851]
条件勾配アルゴリズム(Frank-Wolfeアルゴリズムとも呼ばれる)は、最近、機械学習コミュニティで人気を取り戻している。
ARCSは、ゼロ階最適化において凸問題を解く最初のゼロ階条件勾配スライディング型アルゴリズムである。
1次最適化では、ARCSの収束結果は、勾配クエリのオラクルの数で、従来のアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-09-18T07:08:11Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - A survey on dragonfly algorithm and its applications in engineering [29.190512851078218]
トンボのアルゴリズムは2016年に開発され、研究者が様々な分野の幅広い用途と応用を最適化するために用いたアルゴリズムの1つである。
この研究は、実世界の最適化問題を解決するための手法の頑健さと、複雑な最適化問題を改善するためのその欠如に対処した。
論文 参考訳(メタデータ) (2020-02-19T20:23:26Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。