論文の概要: Exploiting Structure for Optimal Multi-Agent Bayesian Decentralized
Estimation
- arxiv url: http://arxiv.org/abs/2307.10594v1
- Date: Thu, 20 Jul 2023 05:16:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 14:40:31.356229
- Title: Exploiting Structure for Optimal Multi-Agent Bayesian Decentralized
Estimation
- Title(参考訳): 最適マルチエージェントベイズ分散推定のための構造の利用
- Authors: Christopher Funk, Ofer Dagan, Benjamin Noack and Nisar R. Ahmed
- Abstract要約: ベイジアン分権データ融合の鍵となる課題は、噂の伝播(double counting)現象である。
マルチエージェント分散核融合問題における確率的独立構造を利用して、より厳密な境界を求めることができることを示す。
次に、大規模目標追跡シミュレーションを用いて、新しいモノリシックCIアルゴリズムを試験し、より厳密な境界とより正確な推定値が得られることを示す。
- 参考スコア(独自算出の注目度): 4.320393382724066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in Bayesian decentralized data fusion is the `rumor
propagation' or `double counting' phenomenon, where previously sent data
circulates back to its sender. It is often addressed by approximate methods
like covariance intersection (CI) which takes a weighted average of the
estimates to compute the bound. The problem is that this bound is not tight,
i.e. the estimate is often over-conservative. In this paper, we show that by
exploiting the probabilistic independence structure in multi-agent
decentralized fusion problems a tighter bound can be found using (i) an
expansion to the CI algorithm that uses multiple (non-monolithic) weighting
factors instead of one (monolithic) factor in the original CI and (ii) a
general optimization scheme that is able to compute optimal bounds and fully
exploit an arbitrary dependency structure. We compare our methods and show that
on a simple problem, they converge to the same solution. We then test our new
non-monolithic CI algorithm on a large-scale target tracking simulation and
show that it achieves a tighter bound and a more accurate estimate compared to
the original monolithic CI.
- Abstract(参考訳): ベイズ分散データ融合における重要な課題は、以前送信されたデータが送信元に循環する‘噂の伝播’あるいは‘二重カウント’現象である。
これはしばしば、境界を計算するために見積もりの重み付け平均を取る共分散交叉(英語版)(ci)のような近似的な方法によって対処される。
問題は、この境界がタイトではないこと、すなわち、見積もりがしばしば保存的すぎることである。
本稿では,マルチエージェント分散核融合問題における確率的独立構造を生かして,より密接な境界を求めることができることを示す。
i) 元のCIの1つの(モノリシックな)因子ではなく複数の(非モノリシックな)重み付け因子を使用するCIアルゴリズムの拡張。
(ii)最適境界を計算し、任意の依存関係構造を完全に活用できる一般最適化スキーム。
我々は,本手法を比較し,簡単な問題に対して同じ解に収束することを示す。
次に, 大規模目標追跡シミュレーションを用いて新しい非モノリシックciアルゴリズムをテストし, 従来のモノリシックciよりも厳密なバウンドと正確な推定を実現することを示す。
関連論文リスト
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-平均アルゴリズムの変種は、本質的に同じ球面ガウスの混合と、そのような分布から大きく逸脱するデータに適合する。
一般のGMMに対してより効率的な最適化アルゴリズムを開発し、これらのアルゴリズムと正規化戦略を組み合わせ、過度な適合を避ける。
これらの結果から, GMM と k-means 法の間の現状に新たな光を当て, 一般 GMM をデータ探索に利用することが示唆された。
論文 参考訳(メタデータ) (2023-02-05T18:22:29Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation [6.135577623169028]
我々は,ロバスト近似のための半直交埋め込みに,ランダムな特徴選択というアドホックな手法を一般化する。
アブレーション研究の精査により,提案手法はMVTec AD, KolektorSDD, KolektorSDD2, mSTCデータセットに対して,新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2021-05-31T07:02:20Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
ディスカウント型MDPのための2倍堅牢なオフポリチックAC(DR-Off-PAC)を開発した。
DR-Off-PACは、俳優と批評家の両方が一定のステップで同時に更新される単一のタイムスケール構造を採用しています。
有限時間収束速度を研究し, dr-off-pac のサンプル複雑性を特徴とし, $epsilon$-accurate optimal policy を得る。
論文 参考訳(メタデータ) (2021-02-23T18:56:13Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Kernel k-Means, By All Means: Algorithms and Strong Consistency [21.013169939337583]
Kernel $k$クラスタリングは、非線形データの教師なし学習のための強力なツールである。
本稿では,最適化された局所解に対処するための一般的な手法を応用した結果を一般化する。
我々のアルゴリズムは、この非線形分離問題をよりよく解くために、Magricalization-minimization (MM) を利用している。
論文 参考訳(メタデータ) (2020-11-12T16:07:18Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse Canonical correlation analysis (CCA) はスパース構造を用いた潜伏情報検出に有用な統計ツールである。
本稿では,多視点データとスパース構造との潜在関係を検出可能な一般標準相関解析(GCCA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T05:53:48Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。