論文の概要: Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation
- arxiv url: http://arxiv.org/abs/2105.14737v1
- Date: Mon, 31 May 2021 07:02:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 17:52:23.397581
- Title: Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation
- Title(参考訳): 効率的非教師付き異常分割のための半直交埋め込み
- Authors: Jin-Hwa Kim, Do-Hyeong Kim, Saehoon Yi, Taehoon Lee
- Abstract要約: 我々は,ロバスト近似のための半直交埋め込みに,ランダムな特徴選択というアドホックな手法を一般化する。
アブレーション研究の精査により,提案手法はMVTec AD, KolektorSDD, KolektorSDD2, mSTCデータセットに対して,新たな最先端技術を実現する。
- 参考スコア(独自算出の注目度): 6.135577623169028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the efficiency of semi-orthogonal embedding for unsupervised
anomaly segmentation. The multi-scale features from pre-trained CNNs are
recently used for the localized Mahalanobis distances with significant
performance. However, the increased feature size is problematic to scale up to
the bigger CNNs, since it requires the batch-inverse of multi-dimensional
covariance tensor. Here, we generalize an ad-hoc method, random feature
selection, into semi-orthogonal embedding for robust approximation, cubically
reducing the computational cost for the inverse of multi-dimensional covariance
tensor. With the scrutiny of ablation studies, the proposed method achieves a
new state-of-the-art with significant margins for the MVTec AD, KolektorSDD,
KolektorSDD2, and mSTC datasets. The theoretical and empirical analyses offer
insights and verification of our straightforward yet cost-effective approach.
- Abstract(参考訳): 本稿では,教師なし異常セグメンテーションに対する半直交埋め込みの効率について述べる。
事前訓練されたCNNのマルチスケール機能は、最近、大きなパフォーマンスを持つ局所化マハラノビス距離に使われている。
しかし、機能サイズの増大は、多次元共分散テンソルのバッチ逆を必要とするため、より大きなcnnまでスケールアップする上で問題となる。
そこで我々は,多次元共分散テンソルの逆数に対する計算コストを3次的に削減し,ロバスト近似のための半直交埋め込み法,ランダムな特徴選択法を一般化する。
アブレーション研究の精査により,提案手法はMVTec AD, KolektorSDD, KolektorSDD2, mSTCデータセットに対して,新たな最先端技術を実現する。
理論的および実証的な分析は、単純だが費用対効果のあるアプローチの洞察と検証を提供する。
関連論文リスト
- Regularized second-order optimization of tensor-network Born machines [2.8834278113855896]
ボルンマシン(英: Born Machine、TNBM)は、データ分布を学習するための量子インスパイアされた生成モデルである。
そこで本研究では,TNBMトレーニングにおける2次最適化手法を改良し,収束率と最適化モデルの品質を大幅に向上させる。
論文 参考訳(メタデータ) (2025-01-30T19:00:04Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Exploiting Structure for Optimal Multi-Agent Bayesian Decentralized
Estimation [4.320393382724066]
ベイジアン分権データ融合の鍵となる課題は、噂の伝播(double counting)現象である。
マルチエージェント分散核融合問題における確率的独立構造を利用して、より厳密な境界を求めることができることを示す。
次に、大規模目標追跡シミュレーションを用いて、新しいモノリシックCIアルゴリズムを試験し、より厳密な境界とより正確な推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-07-20T05:16:33Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
格子量子場論の研究において、格子理論を定義するパラメータは連続体物理学にアクセスする臨界性に向けて調整されなければならない。
経路積分の領域に適用される輪郭変形に基づいてモンテカルロ推定器を「変形」する手法を提案する。
我々は,フローベースMCMCが臨界減速を緩和し,オブザーシフォールドが原理的応用のばらつきを指数関数的に低減できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T16:37:05Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Efficient Structure-preserving Support Tensor Train Machine [0.0]
列車マルチウェイマルチレベルカーネル(TT-MMK)
我々は,ポリアディック分解の単純さ,デュアル構造保存支援機の分類能力,およびTrain Vector近似の信頼性を組み合わせたTrain Multi-way Multi-level Kernel(TT-MMK)を開発した。
実験により,TT-MMK法は通常より信頼性が高く,チューニングパラメータに敏感で,他の最先端技術と比較した場合のSVM分類において高い予測精度が得られた。
論文 参考訳(メタデータ) (2020-02-12T16:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。