論文の概要: The Changing Role of RSEs over the Lifetime of Parsl
- arxiv url: http://arxiv.org/abs/2307.11060v2
- Date: Fri, 21 Jul 2023 01:55:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 16:51:08.231720
- Title: The Changing Role of RSEs over the Lifetime of Parsl
- Title(参考訳): parslの生涯におけるrsesの役割の変化
- Authors: Daniel S. Katz, Ben Clifford, Yadu Babuji, Kevin Hunter Kesling, Anna
Woodard, Kyle Chard
- Abstract要約: 本稿では,Parslオープンソース研究ソフトウェアプロジェクトとその7年間のさまざまなフェーズについて述べる。
プロジェクトにおいてこれらのフェーズにおいて重要な役割を担った研究ソフトウェアエンジニア(RSE)の4つのタイプを定義している。
- 参考スコア(独自算出の注目度): 3.4969109680727204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This position paper describes the Parsl open source research software project
and its various phases over seven years. It defines four types of research
software engineers (RSEs) who have been important to the project in those
phases; we believe this is also applicable to other research software projects.
- Abstract(参考訳): 本稿では,parslオープンソース研究ソフトウェアプロジェクトとその7年間のさまざまなフェーズについて述べる。
このフェーズでは、プロジェクトにとって重要な4つのタイプの研究ソフトウェアエンジニア(rses)を定義しています。
関連論文リスト
- Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry [68.72590517877455]
材料科学・化学分野における応用のための第二大言語モデル(LLM)ハッカソンの結果について述べる。
このイベントは、グローバルなハイブリッドな場所を巡って参加者が参加し、34チームが応募した。
提出は7つの主要なアプリケーション領域にまたがって行われ、アプリケーションのためのLLMの多種多様な実用性を実証した。
論文 参考訳(メタデータ) (2024-11-20T23:08:01Z) - Towards Evaluation Guidelines for Empirical Studies involving LLMs [6.174354685766166]
大規模言語モデル(LLM)は、ソフトウェア工学の研究環境を変えました。
本稿では,このような研究のガイドラインを初めて提示する。
私たちのゴールは、LLMを含む高品質な実証研究において、私たちのコミュニティ標準が何であるかを共通理解するために、ソフトウェア工学研究コミュニティで議論を始めることです。
論文 参考訳(メタデータ) (2024-11-12T09:35:23Z) - Agents in Software Engineering: Survey, Landscape, and Vision [46.021478509599895]
大規模言語モデル(LLM)は目覚ましい成功を収め、下流の様々なタスクで広く使われてきた。
LLMとソフトウェア工学(SE)を組み合わせた多くの研究では、明示的にも暗黙的にもエージェントの概念が採用されている。
本稿では,知覚,記憶,行動の3つの重要なモジュールを含む,SE における LLM ベースのエージェントのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-13T17:55:58Z) - Estimating the Energy Footprint of Software Systems: a Primer [56.200335252600354]
ソフトウェアシステムのエネルギーフットプリントの定量化は、最も基本的な活動の1つです。
この文書は、この分野で研究を始めたい研究者の出発点となることを目的としている。
論文 参考訳(メタデータ) (2024-07-16T11:21:30Z) - Ten Years of Teaching Empirical Software Engineering in the context of Energy-efficient Software [12.26887943861433]
オランダのアムステルダムにあるVrije Universityversiteit Amsterdamで、Green Labのコースを10回行った経験を共有します。
このコースは、VUのComputer Science MasterプログラムのSoftware Engineering and Green ITトラックで提供されている。
論文 参考訳(メタデータ) (2024-07-08T07:44:49Z) - Step-Back Profiling: Distilling User History for Personalized Scientific Writing [50.481041470669766]
大きな言語モデル(LLM)は、さまざまな自然言語処理タスクに優れていますが、個人向けにパーソナライズされたコンテンツを生成するのに苦労しています。
ユーザ履歴を簡潔なプロファイルに抽出することで,LSMをパーソナライズするためのSTEP-BACK ProFIlingを導入する。
本手法は,一般パーソナライゼーションベンチマークにおいて,ベースラインを最大3.6ポイント向上させる。
論文 参考訳(メタデータ) (2024-06-20T12:58:26Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
我々は,Multi-Aspect Summarization of ScientificAspectsに関する総合テキストデータセットであるMASSWを紹介する。
MASSWには過去50年間にわたる17の主要なコンピュータサイエンスカンファレンスから152,000以上の査読論文が含まれている。
我々は、この新しいデータセットを用いてベンチマーク可能な、複数の新しい機械学習タスクを通じて、MASSWの有用性を実証する。
論文 参考訳(メタデータ) (2024-06-10T15:19:09Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
論文 参考訳(メタデータ) (2023-08-22T12:37:29Z) - Deep Learning Meets Software Engineering: A Survey on Pre-Trained Models
of Source Code [33.78307982736911]
近年、ディープラーニングのソフトウェア工学(SE)への応用が成功している。
特に、事前訓練されたソースコードのモデルの開発と使用により、様々なSEタスクで最先端の結果が得られている。
本稿では,この急速な研究分野の概要と今後の研究方向性を考察する。
論文 参考訳(メタデータ) (2022-05-24T03:14:25Z) - Software must be recognised as an important output of scholarly research [7.776162183510522]
方法論的な観点からも重要でありながら、ソフトウェアは研究のアウトプットとして認識されるべきである、と我々は主張する。
この記事では、ソフトウェアが研究で果たすさまざまな役割について論じ、ソフトウェアと研究の持続可能性の関係を強調します。
論文 参考訳(メタデータ) (2020-11-15T16:34:31Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。