Asymptotically Unbiased Synthetic Control Methods by Density Matching
- URL: http://arxiv.org/abs/2307.11127v4
- Date: Tue, 18 Feb 2025 15:10:12 GMT
- Title: Asymptotically Unbiased Synthetic Control Methods by Density Matching
- Authors: Masahiro Kato, Akari Ohda,
- Abstract summary: Synthetic Control Methods (SCMs) have become a fundamental tool for comparative case studies.
In this study, we highlight a key endogeneity issue in existing SCMs- Namely, the correlation between the outcomes of untreated units and the error term of the synthetic control.
We propose a novel SCM based on density matching, assuming that the outcome density of the treated unit can be approximated by a weighted mixture of the joint density of untreated units.
- Score: 8.862707047517913
- License:
- Abstract: Synthetic Control Methods (SCMs) have become a fundamental tool for comparative case studies. The core idea behind SCMs is to estimate treatment effects by predicting counterfactual outcomes for a treated unit using a weighted combination of observed outcomes from untreated units. The accuracy of these predictions is crucial for evaluating the treatment effect of a policy intervention. Subsequent research has therefore focused on estimating SC weights. In this study, we highlight a key endogeneity issue in existing SCMs-namely, the correlation between the outcomes of untreated units and the error term of the synthetic control, which leads to bias in both counterfactual outcome prediction and treatment effect estimation. To address this issue, we propose a novel SCM based on density matching, assuming that the outcome density of the treated unit can be approximated by a weighted mixture of the joint density of untreated units. Under this assumption, we estimate SC weights by matching the moments of the treated outcomes with the weighted sum of the moments of the untreated outcomes. Our method offers three advantages: first, under the mixture model assumption, our estimator is asymptotically unbiased; second, this asymptotic unbiasedness reduces the mean squared error in counterfactual predictions; and third, our method provides full densities of the treatment effect rather than just expected values, thereby broadening the applicability of SCMs. Finally, we present experimental results that demonstrate the effectiveness of our approach.
Related papers
- Conformal Convolution and Monte Carlo Meta-learners for Predictive Inference of Individual Treatment Effects [2.7320409129940684]
Conformal convolution T-learner (CCT-learner) and conformal Monte Carlo (CMC) meta-learners are presented.
The approaches leverage weighted conformal predictive systems (WCPS), Monte Carlo sampling, and CATE meta-learners.
They generate predictive distributions of individual treatment effect (ITE) that could enhance individualized decision-making.
arXiv Detail & Related papers (2024-02-07T14:35:25Z) - Uncertainty Quantification in Heterogeneous Treatment Effect Estimation
with Gaussian-Process-Based Partially Linear Model [2.1212179660694104]
Estimating heterogeneous treatment effects across individuals has attracted growing attention as a statistical tool for performing critical decision-making.
We propose a Bayesian inference framework that quantifies the uncertainty in treatment effect estimation to support decision-making in a relatively small sample size setting.
arXiv Detail & Related papers (2023-12-16T12:42:28Z) - Optimal Transport for Treatment Effect Estimation [42.50410909962438]
Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias.
Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space.
We propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality.
arXiv Detail & Related papers (2023-10-27T17:22:45Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.