Identification of Average Causal Effects in Confounded Additive Noise Models
- URL: http://arxiv.org/abs/2407.10014v1
- Date: Sat, 13 Jul 2024 21:46:57 GMT
- Title: Identification of Average Causal Effects in Confounded Additive Noise Models
- Authors: Muhammad Qasim Elahi, Mahsa Ghasemi, Murat Kocaoglu,
- Abstract summary: We introduce a novel approach for estimating the average causal effects (ACEs) of any subset of the treatment variables on the outcome.
We also propose a randomized algorithm that further reduces the number of required interventions to poly-logarithmic in the number of nodes.
This establishes that a poly-logarithmic number of interventions is sufficient to infer the causal effects of any subset of treatments on the outcome in confounded ANMs with high probability.
- Score: 7.064432289838905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Additive noise models (ANMs) are an important setting studied in causal inference. Most of the existing works on ANMs assume causal sufficiency, i.e., there are no unobserved confounders. This paper focuses on confounded ANMs, where a set of treatment variables and a target variable are affected by an unobserved confounder that follows a multivariate Gaussian distribution. We introduce a novel approach for estimating the average causal effects (ACEs) of any subset of the treatment variables on the outcome and demonstrate that a small set of interventional distributions is sufficient to estimate all of them. In addition, we propose a randomized algorithm that further reduces the number of required interventions to poly-logarithmic in the number of nodes. Finally, we demonstrate that these interventions are also sufficient to recover the causal structure between the observed variables. This establishes that a poly-logarithmic number of interventions is sufficient to infer the causal effects of any subset of treatments on the outcome in confounded ANMs with high probability, even when the causal structure between treatments is unknown. The simulation results indicate that our method can accurately estimate all ACEs in the finite-sample regime. We also demonstrate the practical significance of our algorithm by evaluating it on semi-synthetic data.
Related papers
- Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments [0.9208007322096533]
We develop a general approach to statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm.
We show how to estimate the average treatment effect within each of these groups, and construct a valid confidence interval.
arXiv Detail & Related papers (2022-03-28T05:43:46Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
We identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection.
We show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates.
Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not.
arXiv Detail & Related papers (2022-02-04T12:08:31Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Causal Mediation Analysis with Hidden Confounders [24.246450472404614]
Causal mediation analysis (CMA) is a formal statistical approach for identifying and estimating causal effects.
This work aims to circumvent the stringent assumption by following a causal graph with a unified confounder and its proxy variables.
Our core contribution is an algorithm that combines deep latent-variable models and proxy strategy to jointly infer a unified surrogate confounder and estimate different causal effects in CMA from observed variables.
arXiv Detail & Related papers (2021-02-21T06:46:11Z) - Efficient Discovery of Heterogeneous Quantile Treatment Effects in
Randomized Experiments via Anomalous Pattern Detection [1.9346186297861747]
Treatment Effect Subset Scan (TESS) is a new method for discovering which subpopulation in a randomized experiment is most significantly affected by a treatment.
In addition to the algorithm, we demonstrate that under the sharp null hypothesis of no treatment effect, the Type I and II error can be controlled.
arXiv Detail & Related papers (2018-03-24T20:21:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.