Screening Mammography Breast Cancer Detection
- URL: http://arxiv.org/abs/2307.11274v1
- Date: Fri, 21 Jul 2023 00:15:56 GMT
- Title: Screening Mammography Breast Cancer Detection
- Authors: Debajyoti Chakraborty
- Abstract summary: Breast cancer is a leading cause of cancer-related deaths.
Current screening programs are expensive and prone to false positives.
This paper proposes a solution to automated breast cancer detection.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Breast cancer is a leading cause of cancer-related deaths, but current
programs are expensive and prone to false positives, leading to unnecessary
follow-up and patient anxiety. This paper proposes a solution to automated
breast cancer detection, to improve the efficiency and accuracy of screening
programs. Different methodologies were tested against the RSNA dataset of
radiographic breast images of roughly 20,000 female patients and yielded an
average validation case pF1 score of 0.56 across methods.
Related papers
- Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Breast Cancer Classification Using Gradient Boosting Algorithms Focusing on Reducing the False Negative and SHAP for Explainability [0.6906005491572401]
This study focuses on studying the performance of different machine learning algorithms based on boosting to predict breast cancer.
The main objective of this study is to use state-of-the-art boosting algorithms such as AdaBoost, XGBoost, CatBoost and LightGBM to predict and diagnose breast cancer.
arXiv Detail & Related papers (2024-03-14T16:35:43Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
We have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not.
Our 4 layers-PCA network has obtained the best accuracy of 100% with a mean of 90.48% on the BCCD dataset.
arXiv Detail & Related papers (2022-06-18T06:17:40Z) - A deep learning algorithm for reducing false positives in screening
mammography [1.914044679141325]
This work demonstrates an AI algorithm that reduces false positives by identifying mammograms not suspicious for breast cancer.
We trained the algorithm to determine the absence of cancer using 123,248 2D digital mammograms (6,161 cancers) and performed a retrospective study on 14,831 screening exams (1,026 cancers) from 15 US and 3 UK sites.
arXiv Detail & Related papers (2022-04-13T23:37:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Discriminative Localized Sparse Representations for Breast Cancer
Screening [0.0]
Early detection and diagnosis of breast cancer may reduce its mortality and improve the quality of life.
Computer-aided detection (CADx) and computer-aided diagnosis (CAD) techniques have shown promise for reducing the burden of human expert reading.
Sparse analysis techniques have produced relevant results for representing and recognizing imaging patterns.
arXiv Detail & Related papers (2020-11-20T04:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.