Impulsive Spin-Motion Entanglement for Fast Quantum Computation and
Sensing
- URL: http://arxiv.org/abs/2307.11287v2
- Date: Thu, 22 Feb 2024 00:11:43 GMT
- Title: Impulsive Spin-Motion Entanglement for Fast Quantum Computation and
Sensing
- Authors: Randall Putnam, Adam D. West, Wesley C. Campbell, and Paul Hamilton
- Abstract summary: We perform entanglement of spin and motional degrees of freedom of a single, ground-state trapped ion through the application of a $16$ ps laser pulse.
The duration of the interaction is significantly shorter than both the motional timescale ($30$ $mu$s) and spin precession timescale ($1$ ns)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We perform entanglement of spin and motional degrees of freedom of a single,
ground-state trapped ion through the application of a $16$ ps laser pulse. The
duration of the interaction is significantly shorter than both the motional
timescale ($30$ $\mu$s) and spin precession timescale ($1$ ns) , demonstrating
that neither sets a fundamental speed limit on this operation for quantum
information processing. Entanglement is demonstrated through the collapse and
revival of spin coherence as the spin components of the wavefunction separate
and recombine in phase space. We infer the fidelity of these single qubit
operations to be $(97^{+3}_{-4})\%$.
Related papers
- Individual solid-state nuclear spin qubits with coherence exceeding seconds [32.074397322439324]
We present a new platform for quantum information processing consisting of $183$W nuclear spin qubits adjacent to an Er$3+$ crystal.
We demonstrate quantum non-demolition readout of each nuclear spin qubit using the Er$3+$ spin as an ancilla.
We introduce a new scheme for all-microwave single- and two-qubit gates, based on stimulated Raman driving of the coupled electron-nuclear spin system.
arXiv Detail & Related papers (2024-10-14T12:25:39Z) - Dephasing and error dynamics affecting a singlet-triplet qubit during coherent spin shuttling [0.0]
We probe decay dynamics contributing to dephasing and relaxation of a singlet-triplet qubit during coherent spin shuttling.
We estimate shuttle error rates below $1times10-4$ out to at least $N=103$, representing an encouraging figure for future implementations of spin shuttling to entangle distant qubits.
arXiv Detail & Related papers (2024-07-16T17:59:28Z) - New Constraints on Exotic Spin-Spin-Velocity-Dependent Interactions with Solid-State Quantum Sensors [12.420668336718697]
We report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins.
One of the NV ensembles serves as the spin source, while the other functions as the spin sensor.
We are able to scrutinize exotic spin-spin-velocity-dependent interactions at short force ranges.
arXiv Detail & Related papers (2024-03-27T05:33:18Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Five-second coherence of a single spin with single-shot readout in
silicon carbide [84.97423065534817]
We demonstrate single-shot readout of single defects in silicon carbide (SiC)
We achieve over 80% readout fidelity without pre- or post-selection.
We report single spin T2 > 5s, over two orders of magnitude greater than previously reported in this system.
arXiv Detail & Related papers (2021-10-04T17:35:02Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.