論文の概要: Photo2Relief: Let Human in the Photograph Stand Out
- arxiv url: http://arxiv.org/abs/2307.11364v1
- Date: Fri, 21 Jul 2023 05:33:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 13:31:09.212188
- Title: Photo2Relief: Let Human in the Photograph Stand Out
- Title(参考訳): Photo2Relief: 写真に写っている人間を遠ざける
- Authors: Zhongping Ji, Feifei Che, Hanshuo Liu, Ziyi Zhao, Yu-Wei Zhang and
Wenping Wang
- Abstract要約: そこで我々は,勾配領域で定義された損失関数を装備することにより,勾配を正確に操作し,ニューラルネットワークを訓練するシグモイド変分関数を導入する。
ネットワークモジュールにおける作業の明確な分割を実現するため,一枚の写真から高品質なリリーフを実現するための2スケールアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 26.102307166656157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a technique for making humans in photographs
protrude like reliefs. Unlike previous methods which mostly focus on the face
and head, our method aims to generate art works that describe the whole body
activity of the character. One challenge is that there is no ground-truth for
supervised deep learning. We introduce a sigmoid variant function to manipulate
gradients tactfully and train our neural networks by equipping with a loss
function defined in gradient domain. The second challenge is that actual
photographs often across different light conditions. We used image-based
rendering technique to address this challenge and acquire rendering images and
depth data under different lighting conditions. To make a clear division of
labor in network modules, a two-scale architecture is proposed to create
high-quality relief from a single photograph. Extensive experimental results on
a variety of scenes show that our method is a highly effective solution for
generating digital 2.5D artwork from photographs.
- Abstract(参考訳): 本稿では,写真の人物をリリーフのように突き出す手法を提案する。
顔と頭に焦点を当てた従来の手法とは異なり、本手法はキャラクターの身体活動全体を記述するアートワークを作成することを目的としている。
ひとつの課題は、教師付きディープラーニングの基盤が存在しないことだ。
我々は,勾配領域で定義された損失関数を具備することで,勾配を巧みに操作し,ニューラルネットワークを訓練するためのシグモイド変種関数を導入する。
第2の課題は、実際の写真がしばしば異なる光条件を越えていることだ。
画像ベースのレンダリング技術を用いて,異なる照明条件下でのレンダリング画像と深度データを取得する。
ネットワークモジュールにおける作業の明確な分割を実現するため,一枚の写真から高品質なリリーフを実現するための2スケールアーキテクチャを提案する。
様々な場面における広範囲な実験結果から,本手法は写真から2次元デジタルアートワークを生成するための極めて効果的なソリューションであることが示された。
関連論文リスト
- MoLE: Enhancing Human-centric Text-to-image Diffusion via Mixture of Low-rank Experts [61.274246025372044]
顔と手の文脈における人間中心のテキスト・ツー・イメージ生成について検討する。
そこで我々は,手近画像と顔画像で訓練した低ランクモジュールをそれぞれ専門家として考慮し,Mixture of Low-rank Experts (MoLE) という手法を提案する。
この概念は、カスタマイズされたクローズアップデータセットによって訓練された低ランクモジュールが、適切なスケールで適用された場合、対応する画像部分を強化する可能性があるという、低ランクリファインメント(low-rank refinement)の観察から着想を得たものである。
論文 参考訳(メタデータ) (2024-10-30T17:59:57Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - Learning to Relight Portrait Images via a Virtual Light Stage and
Synthetic-to-Real Adaptation [76.96499178502759]
Relightingは、イメージ内の人物を、ターゲットの照明のある環境に現れたかのように再照らすことを目的としている。
最近の手法は、高品質な結果を得るためにディープラーニングに依存している。
そこで本研究では,光ステージを必要とせずに,SOTA(State-of-the-art Relighting Method)と同等に動作可能な新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T17:15:58Z) - Time-of-Day Neural Style Transfer for Architectural Photographs [18.796803920214238]
建築写真のためのニューラルスタイル転送手法に着目する。
本手法は,建築写真における前景と背景の構成に対処する。
実験の結果,本手法は前景と背景の両方に光写実的照明と色調を再現できることがわかった。
論文 参考訳(メタデータ) (2022-09-13T08:00:33Z) - Explicitly Controllable 3D-Aware Portrait Generation [42.30481422714532]
ポーズ,アイデンティティ,表現,照明に関する意味的パラメータに基づいて,一貫した肖像画を生成する3次元肖像画生成ネットワークを提案する。
提案手法は,自然光の鮮明な表現によるリアルな肖像画を,自由視点で見る場合,先行技術よりも優れる。
論文 参考訳(メタデータ) (2022-09-12T17:40:08Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - Non-Homogeneous Haze Removal via Artificial Scene Prior and
Bidimensional Graph Reasoning [52.07698484363237]
本研究では,人工シーンの前置と2次元グラフ推論による不均質なヘイズ除去ネットワーク(nhrn)を提案する。
本手法は,単一画像デハジングタスクとハイザイ画像理解タスクの両方において,最先端アルゴリズムよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-04-05T13:04:44Z) - Self-Adaptively Learning to Demoire from Focused and Defocused Image
Pairs [97.67638106818613]
モアレアーティファクトはデジタル写真では一般的であり、高周波シーンコンテンツとカメラのカラーフィルタアレイとの干渉によるものである。
大規模反復で訓練された既存のディープラーニングに基づく復習手法は、様々な複雑なモアレパターンを扱う場合に限られる。
本稿では,高頻度画像の復調のための自己適応学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T23:09:02Z) - High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered
Face Images [10.03187850132035]
本稿では,非フォトリアリスティックな合成画像と事前学習したStyleGAN2モデルの潜在ベクトルとをマッチングするアルゴリズムを提案する。
これまでのほとんどの研究とは対照的に、私たちは合成トレーニングデータを必要としない。
このアルゴリズムは、1Kの解像度で作業する最初のアルゴリズムであり、視覚リアリズムにおける大きな飛躍を表している。
論文 参考訳(メタデータ) (2020-06-26T15:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。