論文の概要: Wanted: standards for automatic reproducibility of computational
experiments
- arxiv url: http://arxiv.org/abs/2307.11383v1
- Date: Fri, 21 Jul 2023 06:45:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 16:52:07.584100
- Title: Wanted: standards for automatic reproducibility of computational
experiments
- Title(参考訳): 欲しがる:計算実験の自動再現性基準
- Authors: Samuel Grayson, Reed Milewicz, Joshua Teves, Daniel S. Katz, Darko
Marinov
- Abstract要約: 本研究は,計算実験の実施方法を特定するための機械可読言語について論じる。
興味のある利害関係者には、https://github.com/charmoniumQ/execution-description.comでこの言語について議論することをお勧めします。
- 参考スコア(独自算出の注目度): 4.175381092341017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Those seeking to reproduce a computational experiment often need to manually
look at the code to see how to build necessary libraries, configure parameters,
find data, and invoke the experiment; it is not automatic. Automatic
reproducibility is a more stringent goal, but working towards it would benefit
the community. This work discusses a machine-readable language for specifying
how to execute a computational experiment. We invite interested stakeholders to
discuss this language at https://github.com/charmoniumQ/execution-description .
- Abstract(参考訳): 計算実験を再現しようとする人は、必要なライブラリを構築し、パラメータを設定し、データを見つけ、実験を実行する方法を確認するために、手動でコードを見る必要がある。
自動再現性はより厳密な目標であるが、それに取り組むことはコミュニティに利益をもたらすだろう。
本稿では,計算機実験の実行方法を指定するための機械可読言語について述べる。
利害関係者はこの言語について、https://github.com/charmoniumq/execution-description.comで議論する。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - GuardRails: Automated Suggestions for Clarifying Ambiguous Purpose Statements [0.0]
関数の前に、プログラマは目的のステートメント、すなわち関数が何を計算するかの、短い自然言語による説明を書くことを奨励される。
目的のステートメントは曖昧であるかもしれない、すなわち、2つ以上の非等価な計算が特定の入力に当てはまる場合、意図した振る舞いを特定できないかもしれない。
本稿では,Large Language Models (LLMs) を用いてそのような入力を提案する小説を提案する。
我々は、Pythonプログラミング言語のVisual Studio Codeの拡張として、データセットのオープンソース実装を作成します。
論文 参考訳(メタデータ) (2023-12-13T14:56:42Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
言語モデル(LM)は、ラベル付き例や自然言語のプロンプトを使用してターゲットタスクを実行するように指示することができる。
タスク仕様プロセスのガイドには*LM自身を使うことを提案します。
我々は、メール検証、コンテンツレコメンデーション、道徳的推論の3つの領域でGATEを研究している。
論文 参考訳(メタデータ) (2023-10-17T21:11:21Z) - Memento: Facilitating Effortless, Efficient, and Reliable ML Experiments [0.09236074230806579]
Mementoは、研究者やデータサイエンティストが計算集約的な実験の効率的な管理と実行を支援するために設計されたPythonパッケージである。
簡単な構成マトリックスを提供することで、任意の実験パイプラインを合理化する機能と、複数のスレッドで同時に実験を実行する機能を備えている。
論文 参考訳(メタデータ) (2023-04-17T04:59:42Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
本稿では,この課題に対して,より斬新で現実的なセットアップを導入する。
我々は、自然言語記述の過小評価は、明確化を問うことで解決できると仮定する。
我々は、生成した合成明確化質問と回答を含む自然言語記述とコードのペアを含む、CodeClarQAという新しいデータセットを収集し、導入する。
論文 参考訳(メタデータ) (2022-12-19T22:08:36Z) - SIERRA: A Modular Framework for Research Automation and Reproducibility [6.1678491628787455]
本稿では,研究の加速と成果向上のための新しいフレームワークであるSIERRAを紹介する。
SIERRAは、独立変数上のクエリから実行可能な実験を生成するプロセスを自動化することで研究を加速する。
個々の研究者のニーズに応じてカスタマイズと拡張が容易なモジュラーアーキテクチャを採用している。
論文 参考訳(メタデータ) (2022-08-16T15:36:34Z) - SIERRA: A Modular Framework for Research Automation [5.220940151628734]
本稿では,研究の加速と成果向上のための新しいフレームワークであるSIERRAを紹介する。
SIERRAは、実験用の独立変数を素早く指定し、実験的な入力を生成し、実験を自動的に実行し、結果を処理してグラフやビデオなどの成果物を生成する。
個々の研究者のニーズに対して、簡単にカスタマイズと自動化の拡張を可能にする、深くモジュール化されたアプローチを採用している。
論文 参考訳(メタデータ) (2022-03-03T23:45:46Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
本研究では,ロボットインタラクションの大規模なオフラインデータセットから視覚に基づく操作タスクを学習する問題について検討する。
クラウドソースの自然言語ラベルを用いたオフラインロボットデータセットの活用を提案する。
提案手法は目標画像仕様と言語条件付き模倣技術の両方を25%以上上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-02T17:42:13Z) - Natural Language-guided Programming [1.3955252961896318]
私たちは、このプロセスを大幅に自動化する可能性を秘めた、新しいタイプの開発ツールに基づいたビジョンを提唱しました。
主要なアイデアは、開発者がすでに記述したコードだけでなく、開発者が次に達成しようとしているタスクの意図も考慮して、コードの自動補完ツールを適用することである。
我々は、自然言語誘導プログラミングの完成を促進するために、このコードを自然言語意図で豊かにするプラクティスを、このプラクティスと呼んでいる。
論文 参考訳(メタデータ) (2021-08-11T13:06:33Z) - Code to Comment "Translation": Data, Metrics, Baselining & Evaluation [49.35567240750619]
本稿では,この課題に対する最近のコード・コンパートメント・データセットについて分析する。
それらをWMT19と比較する。WMT19は、アート自然言語翻訳者の状態のトレーニングに頻繁に使用される標準データセットである。
ソースコードデータとWMT19自然言語データの間には,いくつかの興味深い違いがある。
論文 参考訳(メタデータ) (2020-10-03T18:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。