論文の概要: Advancing Ad Auction Realism: Practical Insights & Modeling Implications
- arxiv url: http://arxiv.org/abs/2307.11732v2
- Date: Tue, 9 Apr 2024 20:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 19:35:31.951574
- Title: Advancing Ad Auction Realism: Practical Insights & Modeling Implications
- Title(参考訳): 広告オークションリアリズムの推進 : 実践的洞察とモデリング的含意
- Authors: Ming Chen, Sareh Nabi, Marciano Siniscalchi,
- Abstract要約: 本稿では,広告主を敵の帯域幅アルゴリズムが支配するエージェントとしてモデル化することで,現代の広告オークションに対する有用な洞察を得ることができることを示す。
ソフトフロアは適切な選択されたリザーブ価格よりも低い収益をもたらし、単一のクエリに注意を向けることさえできる。
- 参考スコア(独自算出の注目度): 2.8413290300628313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary real-world online ad auctions differ from canonical models [Edelman et al., 2007; Varian, 2009] in at least four ways: (1) values and click-through rates can depend upon users' search queries, but advertisers can only partially "tune" their bids to specific queries; (2) advertisers do not know the number, identity, and precise value distribution of competing bidders; (3) advertisers only receive partial, aggregated feedback, and (4) payment rules are only partially known to bidders. These features make it virtually impossible to fully characterize equilibrium bidding behavior. This paper shows that, nevertheless, one can still gain useful insight into modern ad auctions by modeling advertisers as agents governed by an adversarial bandit algorithm, independent of auction mechanism intricacies. To demonstrate our approach, we first simulate "soft-floor" auctions [Zeithammer, 2019], a complex, real-world pricing rule for which no complete equilibrium characterization is known. We find that (i) when values and click-through rates are query-dependent, soft floors can improve revenues relative to standard auction formats even if bidder types are drawn from the same distribution; and (ii) with distributional asymmetries that reflect relevant real-world scenario, we find that soft floors yield lower revenues than suitably chosen reserve prices, even restricting attention to a single query. We then demonstrate how to infer advertiser value distributions from observed bids for a variety of pricing rules, and illustrate our approach with aggregate data from an e-commerce website.
- Abstract(参考訳): 現代のリアルワールドオンライン広告のオークションは、標準モデル(Edelman et al , 2007; Varian, 2009)と、少なくとも4つの点で異なる: (1) 値とクリックスルーレートはユーザーの検索クエリに依存するが、広告主は特定のクエリに対する入札を部分的に「修正」できる; (2) 広告主は競合する入札者の数、アイデンティティ、正確な価値分布を知らない; 3) 広告主は、部分的、集約的なフィードバックのみを受け取っており、(4) 支払いルールは入札者に対して部分的にのみ知られている。
これらの特徴により、平衡入札行動を完全に特徴づけることは事実上不可能である。
本論文は,広告主を敵の帯域幅アルゴリズムが支配するエージェントとしてモデル化することで,売出し機構の複雑さによらず,現代広告の競売に関する有用な洞察を得ることが可能であることを示唆している。
このアプローチを実証するために、我々はまず、完全な平衡特性が知られていない複雑な実世界の価格ルールである「ソフトフロア」オークション(Zeithammer, 2019)をシミュレートした。
私たちはそれを見つける。
(i)値とクリックスルー率がクエリ依存の場合、入札者が同じ分布から引かれる場合でも、ソフトフロアは標準オークション形式と比較して収益を向上させることができる。
(i) 現実のシナリオを反映した分布的非対称性により、ソフトフロアは適切な選択された予備価格よりも低い収益をもたらし、単一のクエリに注意を向けることさえできる。
次に、さまざまな価格設定の入札から広告主の価値分布を推定する方法を実証し、Eコマースのウェブサイトから収集したデータを用いて、我々のアプローチを例示する。
関連論文リスト
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
競売業者がプライベートコストで戦略的売り手からサービスを取得しようとする競売について検討する。
我々の目標は、取得したサービスの品質と販売者の総コストとの差を最大化する計算効率の良いオークションを設計することである。
論文 参考訳(メタデータ) (2024-11-20T18:06:55Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
競売業者が各ラウンドの買い手グループに、合計で$T$で分けない商品を販売している問題を考える。
競売人は、各グループの最低平均配分を保証する公正な制約に固執しつつ、割引された全体の収益を最大化することを目的としている。
論文 参考訳(メタデータ) (2024-05-31T19:26:05Z) - Adaptive Risk-Aware Bidding with Budget Constraint in Display
Advertising [47.14651340748015]
本稿では,強化学習による予算制約を考慮した適応型リスク対応入札アルゴリズムを提案する。
リスク・アット・バリュー(VaR)に基づく不確実性とリスク傾向の本質的関係を理論的に明らかにする。
論文 参考訳(メタデータ) (2022-12-06T18:50:09Z) - Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions [42.002983450368134]
プライスオークションでの競売の仕方について検討する。
第二価格のオークションとは異なり、個人価値を真に入札することはもはや最適ではない。
1つは1つの点予測が可能であり、もう1つはヒント間隔が利用可能である。
論文 参考訳(メタデータ) (2022-11-05T19:20:53Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
ファーストプライスのオークションは、プログラム広告におけるビックレーのオークションに基づく伝統的な入札アプローチを大きく置き換えている。
対戦相手の最大入札分布が分かっている場合, 後悔度を著しく低くする方法を示す。
我々のアルゴリズムは、様々な入札分布の文献で提案されている選択肢よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2021-07-05T07:48:52Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - Real-Time Optimization Of Web Publisher RTB Revenues [10.908037452134302]
本稿では,第2価格オークションによるWebパブリッシャーの収益を最適化するエンジンについて述べる。
エンジンは競売ごとに約1ミリ秒で最適な予備価格を予測できる。
論文 参考訳(メタデータ) (2020-06-12T11:14:56Z) - Reserve Price Optimization for First Price Auctions [14.18752189817994]
本研究では, 入札者のリザーブ・ショックに対する応答性の推定値に基づいて, リザーブ・プライスを適応的に更新し, 最適化する勾配に基づくアルゴリズムを提案する。
第一価格オークションにおける収益は、オンデマンドコンポーネントとエンフビジンコンポーネントに分解することができ、各コンポーネントのばらつきを低減する技術を導入することができる。
論文 参考訳(メタデータ) (2020-06-11T15:35:19Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
本研究では,エージェントが自己の価値を知らない場合に,マルチラウンドの福祉最大化機構設計問題について検討する。
まず、福祉に対する後悔の3つの概念、各エージェントの個々のユーティリティ、メカニズムの3つの概念を定義します。
当社のフレームワークは価格体系を柔軟に制御し、エージェントと販売者の後悔のトレードオフを可能にする。
論文 参考訳(メタデータ) (2020-04-19T18:00:58Z) - Scalable Bid Landscape Forecasting in Real-time Bidding [12.692521867728091]
プログラム広告では、広告スロットは通常、第二価格(SP)オークションを使ってリアルタイムで販売される。
SPでは、1つの項目に対して、各入札者の支配的な戦略は、入札者の視点から真の価値を入札することである。
本稿では,ヘテロセダスティックな完全パラメトリック・レグレッション・アプローチと混合密度・レグレッション・ネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-18T03:20:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。